
SG24-5161-00

International Technical Support Organization

http://www.redbooks.ibm.com

Understanding and Using the SP Switch

Abbas Farazdel, Gonzalo R. Archondo-Callao, Eva Hocks, Takaaki Sakachi, Federico Vagnini

Understanding and Using the SP Switch

April 1999

SG24-5161-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (April 1999)

This edition applies to IBM Parallel System Support Programs for AIX (PSSP) Version 3,
Release 1 for use with AIX 4.3.2 and the SP Switch.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special Notices” on page 257.

Take Note!

Contents

Figures .ix

Tables. .xi

Preface . xiii
The Team That Wrote This Redbook . xiv
Comments Welcome . xv

Part 1. Introduction to the SP Switch . 1

Chapter 1. Overview of the SP Switch . 3

Chapter 2. The Switch Hardware . 5
2.1 The SP Switch Module . 5
2.2 Switch Board Topologies . 9

2.2.1 From 2 to 80 Nodes . 9
2.2.2 From 81 to 256 Nodes . 10
2.2.3 From 257 to 512 nodes. 11

2.3 The SP Switch-8 Switch Board . 11

Chapter 3. Communication Network Hardware 13
3.1 Packet Data Flow . 13
3.2 System and Board Clocking . 17
3.3 STI Timing and Logic Synchronization Process 20
3.4 The Switch Chip . 21

3.4.1 Receiver Modules. 23
3.4.2 Sender Modules . 28
3.4.3 Central Queue . 31
3.4.4 Service Logic . 32
3.4.5 Error Isolation . 34

3.5 Switch Supervisor Functions . 35
3.5.1 Board Clock Selection . 35
3.5.2 Board Status Monitoring . 36
3.5.3 Board Reset . 36
3.5.4 Fan Rotation Sensing . 36
3.5.5 Power Supply Monitoring and Control . 37
3.5.6 Board Level Sensing . 37
3.5.7 Board Configuration Sensing . 37

3.6 The Switch Adapters . 38
3.6.1 TB3 Adapter . 38
3.6.2 TB3MX Adapter . 39
© Copyright IBM Corp. 1999 iii

3.6.3 TB3PCI Adapter . 40
3.6.4 TB3MX2 Adapter . 40
3.6.5 Data Flow . 41

3.7 Performance Data . 47

Chapter 4. Communicating with the SP Switch 49
4.1 Protocol Overview . 49
4.2 Message Passing Interface (MPI) Layer . 51
4.3 Message Passing Client Interface (MPCI) Layer. 52
4.4 PIPE Layer . 54
4.5 Low-Level Application Programming (LAPI) Layer 57
4.6 IP Layer . 59

4.6.1 Address Resolution Protocol (ARP) . 60
4.6.2 Send Data Flow . 61
4.6.3 Receive Data Flow . 63

4.7 Fault Service Daemon . 64
4.7.1 Initialization of SP Switch . 65
4.7.2 Network Recovery Actions . 65
4.7.3 Generation and Update of Routing Tables 66
4.7.4 Administrator Commands . 66
4.7.5 Fault Daemon Recovery . 66

4.8 Kernel Extension . 67
4.8.1 Initialization . 67
4.8.2 Client Windows. 67
4.8.3 User Space Client Initialization . 68
4.8.4 Second Level Interrupt Handlers . 68
4.8.5 Switch Fault Handling . 68
4.8.6 Client DMA Buffer Management . 69
4.8.7 Interaction with the Adapter . 69

4.9 Device Driver . 69

Part 2. SP Switch Operation. 71

Chapter 5. Planning for the SP Switch . 73
5.1 Choosing a Switch . 73
5.2 Switch Node Numbering . 73

5.2.1 Frame Numbers and Switch Numbers . 74
5.2.2 Slot Numbers and Node Numbers . 74
5.2.3 Switch Node Numbers . 75
5.2.4 Inter-Switch Connection Considerations 77

5.3 External Connection Plans . 78
5.3.1 SP Switch Router . 78
5.3.2 Self-Framed Nodes . 80
iv Understanding and Using the SP Switch

5.4 Planning the Switch IP Network . 81
5.5 Planning a Partitioned SP System . 82

5.5.1 Partitioning Rules . 83
5.5.2 Partitioning Aid . 86

5.6 VSD and GPFS . 86
5.6.1 Virtual Shared Disk (VSD) . 86
5.6.2 Recoverable VSD (RVSD) . 87
5.6.3 General Parallel Filesystem (GPFS) . 89

Chapter 6. Installation of the SP Switch . 91
6.1 Installing the SP Switch . 91
6.2 Configuring the SP Switch Adapters . 92
6.3 Specifying the SP Switch Topology File . 93

6.3.1 File Naming Rule . 93
6.3.2 Inside a Topology File . 94
6.3.3 Storing the Topology File in the SDR . 98
6.3.4 The Topology Files for a Partitioned System. 99

6.4 Specifying the SP Switch Clock Distribution Tree 100
6.5 Setting up System Partitions . 103

6.5.1 Defining the IP Aliases . 104
6.5.2 Applying a Partition Configuration. 105
6.5.3 Repartitioning the SP System . 105

6.6 Verifying the Installation . 106
6.6.1 Verification Commands. 106
6.6.2 SDR Information . 107
6.6.3 Logs . 109

Chapter 7. Initialization of the SP Switch . 111
7.1 Configuration Method of the SP Switch Adapter 111
7.2 Running the SP Switch Daemon. 113

7.2.1 The Daemon Initialization Script . 114
7.2.2 The Fault Service Daemon . 116
7.2.3 Managing the rc.switch Script . 118

7.3 Starting the SP Switch . 119
7.3.1 Distributing the Topology File . 120
7.3.2 Starting the Worm Code . 121
7.3.3 Phase One of Switch Initialization. 124
7.3.4 Phase Two of the Switch Initialization . 126
7.3.5 The Generation of Routes . 127

Chapter 8. Managing the SP Switch . 131
8.1 Selecting the Primary and Primary Backup Nodes 131
8.2 Establishing the SP Switch Clock . 134

8.2.1 Verifying the Clock Distribution Tree. 135
 v

8.2.2 Using the Eclock Command . 136
8.2.3 The Actions of Eclock . 138

8.3 Starting the SP Switch . 139
8.4 Removing a Node from the SP Switch Network 140
8.5 Adding a Node to the SP Switch Network . 140
8.6 Stopping the SP Switch . 141
8.7 Automatic Management of the SP Switch . 142

8.7.1 Managing the Switch Before PSSP 3.1 142
8.7.2 The Switch Admin Daemon . 143
8.7.3 The Implementation of the Switch Admin Daemon 144
8.7.4 Management Tasks Not Yet Automated 146

Part 3. SP Switch Problem Determination . 147

Chapter 9. SP Switch Problem Determination Tools 149
9.1 Error Logging . 149

9.1.1 Viewing Error Log Information . 149
9.1.2 Log Filesystem Size Consideration . 150

9.2 SP Switch Log Files . 150
9.2.1 The Centralized Switch Error Log . 152
9.2.2 The flt File . 153
9.2.3 The rc.switch.log File . 160
9.2.4 The out.top File . 160
9.2.5 The act.top and topology.data File . 161
9.2.6 The worm.trace File . 162
9.2.7 The fs_daemon_print.file File . 164
9.2.8 The dtbx.trace File . 165
9.2.9 The Snapshot Log css.snap.log . 167

9.3 SP System Monitoring . 169
9.3.1 Monitoring the Switch Connection. 169
9.3.2 Using the Problem Management Subsystem 171
9.3.3 SNMP Traps on SP Switch Failures . 174

9.4 SP Switch Utilities . 175

Chapter 10. SP Switch Problem Diagnosis . 179
10.1 Verification Procedures . 179
10.2 Diagnosing Procedures . 180

10.2.1 Estart Fails . 181
10.2.2 Node Is off the Switch. 182
10.2.3 Eunfence Fails . 183
10.2.4 Other E-command Failures . 183

10.3 Examples of Recovery Procedures . 184
10.3.1 Estart Problem One . 184
vi Understanding and Using the SP Switch

10.3.2 Estart Problem Two . 186
10.3.3 Eunfence Problem . 187
10.3.4 Node Off the Switch . 188

Part 4. Application and Server Tuning for the SP Switch . 193

Chapter 11. SP Switch-Specific Application and Server Tuning 195
11.1 General Tuning Recommendations . 195

11.1.1 Scheduling Administrative Tasks . 196
11.2 Tuning Considerations . 196

11.2.1 SP Switch Options . 197
11.2.2 AIX Tuning Option . 204
11.2.3 IP Tuning Parameters . 206
11.2.4 MPI Tuning . 208

11.3 Files Used on the SP for Tuning . 209
11.3.1 Select an IBM-Supplied Alternate Tuning File 210
11.3.2 Create and Select Your Own Alternate Tuning File 210

11.4 Common SP Application Tuning for Performance 212
11.4.1 Server Tuning . 212
11.4.2 Tuning for FTP . 213
11.4.3 Tuning for NFS . 214

11.5 SP Environment Tuning for Performance . 217
11.5.1 Tuning for Development Environments 217
11.5.2 Tuning for Scientific and Technical Environments 218
11.5.3 Tuning for Commercial and Database Environments 219

11.6 Application-Specific Tuning . 220
11.6.1 Tuning for the ADSTAR Distributed Storage Manager (ADSM)221
11.6.2 Tuning for Virtual Shared Disk (VSD) Servers 221
11.6.3 Tuning for GPFS. 223

Part 5. Appendices . 225

Appendix A. SP Switch Service Interface . 227
A.1 Service Packets . 227

A.1.1 Initialization Packet . 227
A.1.2 Read Status Packet . 231
A.1.3 Reset Error Packet . 231
A.1.4 Set Time-of-Day Packet . 234
A.1.5 Send Time-of-Day Packet. 235
A.1.6 Error/Status Packet. 236

A.2 Error Registers . 242
A.2.1 First Error Capture Register . 242
 vii

A.2.2 Second Error Capture Register . 243

Appendix B. Example Configuration Files . 247
B.1 Example of a Switch Topology File . 247
B.2 Example of a Clock Topology File . 250

Appendix C. SP Switch Error Messages . 253
C.1 SP Switch Worm Return Codes . 253
C.2 Return Codes from Route Table Generation . 255

Appendix D. Special Notices . 257

Appendix E. Related Publications . 261
E.1 International Technical Support Organization Publications 261
E.2 Redbooks on CD-ROMs . 261
E.3 Other Publications. 261

How to Get ITSO Redbooks . 263
IBM Redbook Fax Order Form . 264

List of Abbreviations. 265

Index . 267

ITSO Redbook Evaluation . 271
viii Understanding and Using the SP Switch

Figures

1. A Two-Frame SP System . 4
2. Switch Board Physical Layout . 5
3. Switch Board Logical Layout . 7
4. Multiple Parallel Routes . 7
5. Multiple Paths between Two Nodes. 8
6. Two Frames Cabling . 9
7. Three Frames Cabling . 10
8. The 128 Nodes SP Switch Topology . 11
9. Logical View of SP Switch-8 Switch Board . 12
10. Packet Routing. 14
11. Multiple Data Flows on the SP Switch . 15
12. Switch Channel Signals . 16
13. Clock Components Position. 18
14. Clock Distribution Tree. 20
15. Switch Chip Components. 23
16. Receiver Modules Components. 24
17. Route Byte . 26
18. Sender Module Components . 29
19. Service Packet Format. 33
20. TB3 Adapter Structure . 38
21. TBMX Adapter Structure . 39
22. TB3PCI Adapter Structure . 40
23. TB3MX2 Adapter Structure . 41
24. Adapter Logical Structure . 43
25. Switch Packet Creation for User Mode . 45
26. Switch Packet Creation for Service . 45
27. Switch Packet Creation for IP . 46
28. Communication Subsystem Components . 50
29. PIPE FIFOs among Tasks . 53
30. PIPE-to-Adapter Data Flow . 55
31. Packet Created by PIPE Layer . 56
32. IP Kernel Extension . 60
33. IP Kernel Data Structures . 61
34. IP Send FIFO . 62
35. Node Numbers. 75
36. Chip Interconnection and Slot Assignment . 76
37. Switch Node Numbers . 77
38. SP Switch Router Connection to the SP System. 79
39. GRF with Multiple Switch Router Adapter . 80
40. Switch Network Without ARP. 81
© Copyright IBM Corp. 1999 ix

41. Switch with ARP. 82
42. Partition Boundary and Chip Port Assignment. 84
43. Partition Layout and Chip Assignment. 85
44. Partitioning in a Two Switch-Board System . 85
45. VSD Architecture . 87
46. RVSD Configuration. 88
47. RVSD Takeover . 88
48. GPFS Overview . 89
49. Installation and Configuration: Processes and Resources 92
50. Topology File Nomenclature . 95
51. Links in Switch Board. 98
52. Directory Structure for Partition Configuration . 100
53. Standard Clock Distribution for a System with 7 NSBs and 4 ISBs 102
54. Overview of Partitioning . 104
55. Initialization of the SP Switch. 111
56. The Switch Board (faint nodes fenced or down) 125
57. Initial Values. 133
58. Values after Estart . 133
59. Values after Primary Backup Node Takeover . 134
60. Values after Primary Node Takeover. 134
61. Using Hardware Perspective . 170
62. Using Event Perspective . 171
63. Switch Buffer Pool Allocation . 201
x Understanding and Using the SP Switch

Tables

1. SP Switch Raw Performance. 47
2. Frame Numbers and Switch Numbers. 74
3. IP Assignment Options . 92
4. SP Switch Log Files . 151
5. SP Switch-Related Message Identifiers. 152
6. Summary Record Fields . 153
7. SP Switch Device Status . 161
8. SP Switch Link Status . 161
9. SP Switch Adapter TB3 Diagnostics Failure Codes 167
10. Event Management Resource Variables for the SP Switch. 172
11. Error Log Entries that Call css.snap . 175
12. arptab_nb Tuning. 205
13. arptab_bsize Tuning . 205
14. MP_EAGER_LIMIT . 208
15. MP_BUFFER_MEM. 209
16. Initial Values for SP Switch Performance at the Expense of Ethernet. . . 211
17. Initial Values for Other Adapter Types . 211
18. Initialization Service Packet . 228
19. Read Status Service Packet . 231
20. Reset Error Service Packet . 232
21. Set Time-of-Day Packet. 235
22. Send Time-of-Day Packet . 235
23. Error/Status Packet . 236
24. First Error Register. 242
25. Second Error Capture Register . 244
26. Worm Return Codes . 253
27. RTG Return Codes . 255
© Copyright IBM Corp. 1999 xi

xii Understanding and Using the SP Switch

Preface

Although the IBM RS/6000 Scalable Powerparallel (SP) supercomputer is
now more than five years old, and enjoying its second generation of switch
technology, the SP Switch is still quite a mystery to many. It embodies
leading-edge technology in an area where few people were knowledgeable
just a decade ago. This redbook seeks to remove much of the mystery. It is
written for system administrators, users and servicers of the SP. The book is
organized in five parts and includes the following chapters:

1. Overview of the SP Switch
2. The Switch Hardware
3. Communication Network Hardware
4. Communicating with the SP Switch
5. Planning for the SP Switch
6. Installation of the SP Switch
7. Initialization of the SP Switch
8. Managing the SP Switch
9. SP Switch Problem Determination Tools
10.SP Switch Problem Diagnosis
11.SP Switch Specific Application and Server Tuning

In September, 1993, IBM delivered the first generation of its Scalable
Powerparallel (SP) supercomputer for scalable parallel computing. This was
the SP1:

a system comprised of special AIX workstations (nodes) grouped together
physically in building blocks (frames) of 16 or less; the nodes may be
linked via various communication networks to allow for collaborative
problem solving and symmetric maintenance.

The current day SP uses a shared-nothing model, meaning each node has its
own memory, disk, CPU, and so on. In order for a group of nodes to work
together on a problem, they must share data and status as needed through
inter-node messages. These messages are sent by the components of a
running application and are delivered through “packets” sent over the
communication network chosen for the application.

To enhance the performance of these communication tasks, IBM provides a
special hardware medium: the SP Switch. This switch supports a high-speed
communication network which provides applications with a low-latency,
high-bandwidth path for message passing. Since September, 1996, the SP
has been available with its second generation of switch technology, the SP
Switch. The switch is considered the heart of the SP.
© Copyright IBM Corp. 1999 xiii

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Abbas Farazdel is an SP technical consultant and a senior project manager
at the International Technical Support Organization, Poughkeepsie Center.
Before joining ITSO in 1998, Abbas worked in the Global Business
Intelligence Solutions (GBIS) group at IBM Dallas as an implementation
manager for data mining solutions and in the Scientific and Technical
Systems & Solutions (STSS) group at the IBM Thomas J. Watson Research
Center as a high-performance computing specialist. Abbas holds an M.S.
degree in computational physics and a Ph.D. in computational chemistry from
the University of Massachusetts.

Gonzalo R. Archondo-Callao is Manager of the High-Performance
Computing Group at the Computer Center of the Federal University of Rio de
Janeiro (NCE-UFRJ) in Brazil. He joined NCE-UFRJ in 1977 where he has
been working mainly as a systems administrator. He has worked with UNIX
for over 12 years and has three years experience with the RS/6000 SP and
AIX. He is also a visiting professor at the computer science department of the
Federal University of Rio de Janeiro. He holds a M.S. degree in computer
science from the University of California, Los Angeles. His areas of interest
include operating systems, computer architecture, and networking.

Eva Hocks is a systems administrator for Power Parallel Systems at the
Computer Center of the Research Center for High Energy Physics, GSI, in
Germany. She joined GSI in 1992. Her areas of expertise include System
design and installation as well as interoperability of large systems and
workstations operating on VM, MVS and several flavors of UNIX in a high
availability environment. Before she joined GSI, she worked at the Technical
University of Darmstadt as systems administrator for IBM and Siemens Super
Computers. Since 1989, she has been project manager at the SHARE
Technology Conference. She became a member of the Internet Society in
1991, working on Internet security issues. Eva holds a B.S. degree in
mathematics and computer science from the Technical University of Aachen.

Takaaki Sakachi is an I/T Specialist at the Systems Engineering Division in
IBM Japan. He joined IBM Japan in 1989, has been working for technical
support in commercial area computing, and has three years experience in the
SP field. He holds a degree in chemical engineering from Tokyo Metropolitan
University. His areas of expertise include Oracle for SP and VSD.
xiv Understanding and Using the SP Switch

Federico Vagnini is an I/T specialist at Midrange Technical Support in IBM
Italy. He joined IBM in 1995 and has three years experience in the AIX field.
He holds a degree in electronic engineering from Politecnico di Milano. His
areas of expertise include TCP/IP networking and network security.

We give special thanks to Skip Lundin from the IBM PPS Lab Poughkeepsie
for his efforts in reviewing the entire redbook and providing useful information
and suggestions.

Thanks also to the following people for their contributions to this project:

Bernard King-Smith

Bob Simon

Nick Rash

Kevin Reilly

Bill Tuel

Jonathon Kaufman

Peter Chenevert

A. Z. Muszynski

Fu-Chung Chang

Aruna Ramanan
IBM PPS Lab Poughkeepsie

Paul Crumley
IBM Watson Research

Terry Barthel, Al Schwab
ITSO Editors, Poughkeepsie

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:
 xv

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 279
to the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet usershttp://www.redbooks.ibm.com
For IBM Intranet usershttp://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
xvi Understanding and Using the SP Switch

Part 1. Introduction to the SP Switch
© Copyright IBM Corp. 1999 1

2 Understanding and Using the SP Switch

Chapter 1. Overview of the SP Switch

There are four basic physical components of an SP (See Figure 1 on page 4):

frame A containment unit consisting of a rack to hold computers, together
with supporting hardware, including power supplies, cooling
equipment and communication media such as the system
Ethernet.

nodes AIX RS/6000 workstations packaged to fit in the SP frame; a node
has no display head or keyboard, and so user human interaction
must be done remotely.

switch The medium that allows high-speed communication between nodes.

CWS The Control Workstation (CWS) is a stand-alone AIX workstation,
with display and keyboard, possessing the hardware required to
monitor and control the frame(s) and nodes of the system.

SP nodes are available in three form factors: thin, wide and high. The SP is
generally available with from 2 to 128 nodes, which are packaged
in from 1 to 9 logical frames. The number of physical frames can
be more, depending on the types of nodes.

Each frame may contain an SP Switch board. The nodes of the frames are
connected to their respective switch board via a special SP Switch adapter
and corresponding “switch cables”, and the switch boards of the system are
connected via the same type of cables. Thus, a high-speed communication
network is formed which allows the nodes to communicate with each other to
share data and status. The primary purpose of this high-speed network is the
support of solving problems in parallel.

Communication over the switch is supported by IBM software which is
shipped with the SP. The switch hardware together with this software is called
the Communication Subsystem (CSS). On each node attached to the switch,
the CSS software is continuously available to provide the following:

1. a communication path through the switch to other nodes

2. monitoring of the switch hardware

3. control of the switch hardware for startup, and in case of error, execution
of any appropriate recovery action

This software is responsible for sending and receiving packets to and from
other nodes, on behalf of applications. It also sends packets to switch
hardware components as part of its monitoring and controlling functions.
© Copyright IBM Corp. 1999 3

If a component of the switch network (switch board, adapter, cable, node, or
software) is not functioning correctly, the CSS software is responsible for
recognizing this and reporting this “fault” via the AIX error log. The software
will also take recovery action as deemed most appropriate for the health of
the system, which may mean removing the offending component from the
switch network.

Figure 1. A Two-Frame SP System

Wide
node

Thin
node

High
node

Switch

Frame 1 Frame 2

Control Workstation

Serial
cable

Serial
cable

switch-to-switch
cable

Node switch cable

Switch

CSS adapter

Jacks
4 Understanding and Using the SP Switch

Chapter 2. The Switch Hardware

The RS/6000 SP system exploits SP Switch multistage switching technology
in order to create a high performance network that connects all computing
elements. Each SP system is composed of 2 to 512 RS/6000 machines,
hereafter called nodes.

In order to support such large quantities of nodes attached to the same SP
Switch and also be able to configure systems with lesser numbers (and lower
cost), the switch fabric is not monolithic, but is composed of modules. All
modules are made in the same way and can be used either alone to create
small switching networks, or combined to get bigger networks. It is always
possible to add modules to an existing configuration to enlarge the network.

2.1 The SP Switch Module

The basic module of the SP Switch is the switch board. It is shown in Figure
2. It is a set of hardware components that create the network and give the
system administrator monitoring access to the board.

Figure 2. Switch Board Physical Layout

There is a supervisor card that constantly monitors the hardware environment
and receives configuration messages from the system administrator.
© Copyright IBM Corp. 1999 5

The board is powered by two power supplies that share the load. The power
supplies take 48 volts as input and produce 3.3 volts to the switch board. The
switch supervisor monitors the availability of the 48 volts, the current usage of
each of the power supplies, and the output 3.3 volts. The second power
supply is redundant.

The switch board is connected with the rest of the switch complex by
interposer cards. They provide access to data channels and the supervisor
card, and receive the 48-volt power. For each interposer there is a
connection, or jack, on the bulkhead side where the appropriate cable can be
attached. Bulkhead jacks are numbered: 1 for 48-volt power, 2 for switch
supervisor card connection, 3-to-35 for data channels.

There are five cooling fans in the switch assembly. The rotation of these fans
is monitored by the switch supervisor. There is an N+1 redundancy in the
switch assembly so that a fan may be faulty without affecting the system.

From the network point of view, the switch board is a box that has 32 links
with the outside and there are several paths between any pair of them. When
connected to nodes, the switch boards have 16 links to nodes and the
remaining 16 to other switch boards. To create bigger networks, several
switch boards may be interconnected with other switch boards.

The logical structure of a switch board’s network can be seen in Figure 3 on
page 7. On the left side are the connections to nodes, while on the right side
are connections to other possible switch boards. If the desired configuration
does not exceed 16 nodes, the connections on the right side are not used.

All internal and external switch board point-to-point links are bidirectional full
duplex. They comprise two channels that can carry data in opposite
directions simultaneously, each channel capable of carrying 150 MB of data
per second.

Inside the SP Switch there are eight switching devices called switch chips.
They are the heart of the switch board and are responsible for routing the
data from one link to another. They are non-blocking devices, so any two data
paths can traverse them in parallel if they do not require access to the same
link between switch chips.

Each switch chip has eight ports from which it can send and receive data
simultaneously. Data arriving at one port can be routed to and transmitted
from any other port.
6 Understanding and Using the SP Switch

Figure 3. Switch Board Logical Layout

Depending on switch chip configuration, different paths are available to
connect the same pair of external devices, making the network highly
available. In the case of link failure or switch chip anomalies, there is an
internal protocol that handles errors and tries to recover from them. If no
correction is possible, a link or a switch chip is marked as unusable and
different data paths are used to connect pairs of nodes.

Multiple data flows are supported concurrently, with minimal sharing of
communication links. In Figure 4, the two highlighted paths are managed in
parallel even though they share a switch chip; the internal structure of the
switch chip is able to route data among all its ports in parallel.

Figure 4. Multiple Parallel Routes

S w itch B oa rd

P 0
P 1
P 2
P 3

P 4
P 5
P 6
P 7

P 8
P 9

P 1 0
P 11

P 1 2
P 1 3
P 1 4
P 1 5

N
od

e
co

nn
ec

tio
n

s

Sw itch Board

P0
P1
P2
P3

P4
P5
P6
P7

P8
P9

P10
P11

P12
P13
P14
P15
The Switch Hardware 7

If the communicating nodes are connected to the same switch chip, the data
they send does not traverse the SP Switch fabric beyond the chip. If they do
not share the chip, they are connected by a set of links and data flows
through additional chips to get to the destination. In the latter case a longer
path is required, especially if the nodes are not connected to the same switch
board. Transmission delays are a little longer but, as we see in 3.7,
“Performance Data” on page 47 the differences between shorter and longer
paths are not very significant and performance is very good in both cases.

Path redundancy is possible due to the internal network structure of the
switch board. The switch chips are divided into two fully interconnected
columns, or stages, of four switching elements. The first stage is connected to
nodes; the second stage is used to support an extended network, which can
grow beyond the single switch board. Each chip in one stage is connected to
all the chips of the second stage so that two nodes on different switch chips in
the first stage can be connected using each of the chips of the second stage.

A representative multiple paths between two nodes is shown in Figure 5.
Consider the nodes connected to switch ports P0 and P15, as an example.
These two nodes have four separate communication paths between them.
These paths are the shortest paths available. Other paths are also possible
using a greater number of switching devices, but are not normally used
except in the unusual case of multiple switch hardware failures.

Figure 5. Multiple Paths between Two Nodes

The standard SP Switch network configurations provide at least four shortest
paths between nodes that make use of different sets of switch chips, even

Sw itch Board

P0
P1
P2
P3

P4
P5
P6
P7

P8
P9

P10
P11

P12
P13
P14
P15 4

3

2

1

8 Understanding and Using the SP Switch

when multiple switch boards are used. This feature is required to provide high
availability and performance across the network.

2.2 Switch Board Topologies

A single switch board is able to interconnect up to 16 nodes. In order to
support a larger number, multiple switch boards are used and interconnected
in precise fashion. Different topologies are available, and all are structured in
order to maintain the basic switch property: at least four independent shortest
paths are available between any two nodes connected to different switch
chips.

2.2.1 From 2 to 80 Nodes
Up to five switch boards may be interconnected directly in a star topology.
Data passes through, at most, two switch boards before arriving at the
destination. This makes it possible to connect up to 80 machines (16 nodes
for each of five boards).

Depending on the number of switch boards involved, different cabling is
specified and required to interconnect boards. Figure 6 and Figure 7 on page
10 are two examples of systems with two and three frames.

Figure 6. Two Frames Cabling

All switch chip ports are used to create the network. When only two frames
are present, there are 16 connections between two frames, while with three
frames, only eight connections are possible. In any case, the four shortest
paths are always present.
The Switch Hardware 9

Figure 7. Three Frames Cabling

If the system grows and a new frame is added, all the board-to-board cabling
must be redone. This means that the network has to be stopped during the
re-configuration. A way to avoid this downtime is to start using the
intermediate switch boards we discuss in 2.2.2, even for a system with less
than 80 nodes. This is a more expensive solution but the investment may be
worthwhile if the system is expected to grow.

2.2.2 From 81 to 256 Nodes
When more than 80 nodes are required, at least a sixth switch board is
needed. It is not possible to connect more than five switch boards in a star
topology and still have at least four independent shortest paths. An
intermediate switch level is required.

Additional switch boards are then added to the network topology, and their
task is to provide sufficient links between other switch boards. Since these
boards do not connect to nodes, they are called intermediate switch boards
(ISBs), while the boards that are connected to nodes are called node switch
boards (NSBs).

ISBs are physically placed in a frame, called a switch-only frame, that
provides power, management, and connectivity to 4 or 8 intermediate switch
boards. In any configuration, the number of required ISBs is always a multiple
of 4.
10 Understanding and Using the SP Switch

When the number of nodes is from 81 to 128, only 4 ISBs are required, while
all eight ISBs in a switch frame are needed to reach the 256-node
configuration. An example of a 128-node topology is shown in Figure 8.

Figure 8. The 128 Nodes SP Switch Topology

2.2.3 From 257 to 512 nodes
In order to reach the 512-node configuration, 16 ISBs are required, using two
switch frames. Each NSB connects each port to a different ISB port, getting to
the maximum of 32 NSBs: 16 ports times 32 NSB equals 512 nodes.

2.3 The SP Switch-8 Switch Board

Customers who do not need more than eight nodes in an SP system because
they have no plan to grow beyond that size can choose a low-cost switch
board that has the same features as the switch board we already saw, but

NSBsISBsNSBs

N
o

d
es

N
o

d
es
The Switch Hardware 11

which only allows eight connections to nodes and cannot connect to other
boards.

The SP Switch-8 switch board is a multistage switched network that has eight
bidirectional links that connect only to nodes and whose logical topology is
depicted in Figure 9.

Figure 9. Logical View of SP Switch-8 Switch Board

This switch board is used only in small environments. It has the same
components as the full switch frame and all the descriptions we give in the
following chapters also apply to this board. However, all future references to
the term switch board imply the full-featured board comprising eight switch
chips.

S w itc h B o a rd

N
o

d
es

N
o

d
es
12 Understanding and Using the SP Switch

Chapter 3. Communication Network Hardware

In this chapter we describe in more detail what the components of the SP
Switch are and how they cooperate to create the high-performance
interconnection network that is the heart of the SP system.

Reliability is of great importance. The communication subsystem detects,
locates and isolates all failures. Communication links are protected by
error-detecting codes; switch chips are designed using error detection and
fault isolation methods. Links and switch chips can be individually disabled to
isolate faults, making some communication flow through alternative paths.

3.1 Packet Data Flow

Data is inserted in the SP Switch by a node through the node’s switch
adapter, which provides for switch network communication. The information
that flows into the network is made up of single independent packets of data
that contain the route information needed to traverse the SP Switch. The
route information is used by switch chips in order to decide to which of its
ports to route the received packet.

Each packet is destined either to a node or to a single switch chip. In the first
case it is typically a data packet that has been created by some node
application, while in the second case it is called a service packet and is used
to configure the features of the switch chip. A service packet may also be
created by a switch chip to notify a node of some event that is meaningful in
network administration, or by a node for node-to-node administrative
communications.

Both data and service packets flow on the same network. This choice keeps
architecture simple and gives to both packet types similar path redundancy.
Service packets do not greatly affect the network performance since they are
used basically whenever a switch network configuration is executing or in
case of failure recovery. The protocol used is designed to keep service
communication low.

Packets are of variable length (application dependent) and are identified by
special beginning of packet (BOP) and end of packet (EOP) control
characters. The routing part is also of variable length and contains, for each
switch chip the packet reaches, the port number to exit through. As shown in
Figure 10 on page 14, the first number instructs the first chip to which of its
ports the packet is to be sent, the second number instructs the second chip,
and so forth.
© Copyright IBM Corp. 1999 13

Figure 10. Packet Routing

Each switch chip starts reading the incoming packet starting from the BOP
character and then begins scanning the routing part to detect to which of its
output ports the packet has to be forwarded. As soon as it detects the port,
the bytes are passed through it to the following switch chip or the destination
node adapter.

This is not a store-and-forward protocol, so incoming bytes of data are sent to
the next network stage as soon as possible. The data flow could only be
delayed by another packet using the same output port.

Since packet sizes may be very long and minimal buffering is used during
transmission time to reduce latency, the data may be strung across the
network route.

In order to improve link reliability, all bytes transmitted across the link
(packets and control characters) are protected by a time-based, 2-byte Error
Detection Code (EDC) that gives a checksum value of the transmitted data.
Time boundaries, start to end, are called EDC Frames, expressed as a
programmable number of cycles ranging in power of two from 32 to 256 bytes.
EDC errors are used to monitor link data quality and to identify possible link
degradation.

Since the EDC Frame is time-based instead of packet-based, the ECD Frame
may span a partial packet, a full packet, multiple packets, or no packets at all.
It is not a separate entity from a message packet, but they overlap. The EDC
Frame has no effect on the message packet except to steal a fraction of the
bandwidth to insert the EDC bytes into the data flow.

7 EOP3 Data4BO P

Destination

Source

port 7
3 rd Chip

port 41st Chip

port 3

2nd Chip
14 Understanding and Using the SP Switch

When traffic on the switch grows, contention for resources may occur inside a
single switch chip. Different packets may traverse the same chip at the same
time, but if they have to use the same output port, a serialization must occur.
The packet that first requests the usage of the port passes through it, while
the others are queued on the switch chip.

An example of data flow on a switch board is shown in Figure 11. There are
three data flows in the same direction that make use of four switch chips. For
each flow, the data bytes are continuously flowing from one switch chip to
another. In the same instant, all the following may occur:

 • The beginning of the packet may be on one switch chip
 • Other packet bytes may be on the same chip
 • Still other bytes may be travelling on the link between two chips
 • The end of the packet may not yet have even been inserted into the switch

network

Two data flows may traverse the same chip in parallel, but if they require use
of the same port, one of them is stopped. In the figure, the beginning of the
packet of Flow C is buffered in Chip 1, while other bytes are still travelling to
Chip 1. When the packet in Flow B finishes, Flow C will proceed.

.

Figure 11. Multiple Data Flows on the SP Switch

A flow control protocol is introduced for each point-to-point link in order to
handle events that may reduce the capability of input ports to accept the data
sent by output queues, like data buffering on the switch chip, computational
overhead on the chip itself in managing packets, or configuration requests.

Flow B

Chip 2

Flow A

Flow C

Byte of data

Chip 4

Chip 1Chip 3
Communication Network Hardware 15

Each unidirectional part of the point-to-point link between two switch
elements (switch chip or switch adapter) is made by 11 signals as described
in Figure 12 on page 16.

Ten signals are driven by the transmitter:

 • Data (8 bits)

 • TAG (1 bit)

 • Data Valid signal (1 bit)

One signal is driven by the receiver:

 • Token signal (1 bit)

Figure 12. Switch Channel Signals

The signals can have a different meaning depending on the operational mode
of the link, as defined by the sending port. The TAG bit identifies the 8-bit data
as a control character or as a data character.

The token signal is used for flow control. When sending and receiving ports
are initialized, the sending port gets its token counter set to the size of the
buffer present in the receive port. Each time the sending port transmits two
bytes of data, it decreases its token counter by one. When the receiving port
frees its internal buffer of the same fixed amount of data, it sends a token
signal to the sending port. Upon the reception of a token signal, the sending
port increases its token counter.

The number of tokens on the sending port reflects the space available on the
receiving port queue except for possible data and tokens actually traversing
the link. When the counter reaches zero, the sending port does not send any
more data and starts buffering the bytes directed to that sending port.

8 bit Data

1 bit Data Valid

1 bit Token Signal

Switch Chip
or Switch
Adapter

send port

Switch Chip
or Switch
Adapter
receive

port

1 bit TAG

...
16 Understanding and Using the SP Switch

In a situation of high contention, the packet may be partially buffered in
different switch chips, waiting for the locking congestion to be removed. As
soon as a switch chip is able to receive more data on a link, tokens are
transmitted backward, making the data flow continue.

The token protocol is designed to detect and correct token signal errors that
may create spurious tokens on the sender or avoid reception of tokens.
Sender and receiver periodically check their token counter values and
synchronize themselves.

3.2 System and Board Clocking

The whole system is synchronous. All network devices are driven by the
same clock signal used as a reference when sending and receiving signals
through physical wires. All switch chips and adapters have an internal counter
called time-of-day (TOD) that, once initialized, is increased by the system
clock to provide a common value on all devices.

Data channels are sampled to detect data bits using this common clock;
however, because of the phase difference inherent at each switch chip due to
irregularities in the clock distribution network, the data leaving one chip must
be synchronized to the clock seen by the receiving chip. Such link tuning is
performed for each port of the switch chip using a Self-Timed Interface (STI)
macro embedded in the receive section of each switch chip’s port. The STI
both initially tunes the links at system initialization and dynamically maintains
the proper sampling of the received data as the operating environment
changes. See 3.3, “STI Timing and Logic Synchronization Process” on page
20 for more details.

Different clock sources may be used. A single switch board can receive its
clock from any of 35 sources:

 • There are two local 18.75 MHz crystal oscillators on a switch board

 • There is a differential clock signal received on each of the 32 switch
board’s data cables

 • There is a connector for receiving a differential clock signal from a source
external to the SP system. The switch board can use such signal, but this
feature is currently not supported.

Each switch board assembly has a switch supervisor card which is controlled
from the control workstation. The switch supervisor cards are used to define
the clock signal distribution. Each supervisor sends signals to all its board’s
switch chips to define how the clock signal is generated and used by all the
Communication Network Hardware 17

components of the board. When the clock is configured by PSSP software,
the switch supervisor cards are told to set it up.

From the selected source the clock signal is fed to one of the four Phase
Locked Loops (PLL) present on the board for clock pulse shaping and to
reduce clock jitter. Clock shaping is very critical for data receiving in each
switch chip. The clock signal provided by the PLL is then used by all the
switch chips on the board (Figure 12 on page 16).

Different topologies for the clock distribution network are possible depending
on the number of switch boards. The simplest configuration is an SP Switch
with only one switch board: one of its internal oscillators is selected as the
clock source.

The PLLs are strictly tied to switch chips, as can be seen in Figure 13. Only
switch chips SW2, SW3, SW4 and SW5 have PLLs and can receive the clock
signal from the oscillators.

Figure 13. Clock Components Position

On a single-board SP Switch, one of the switch chips with PLL is selected to
be the master chip for the board. It receives the signal from the selected
oscillator, uses its PLL and then distributes the clock to all other switch chips
using dedicated clock wires. The standard PSSP 3.1 configuration always
chooses SW2 and oscillator number 2, which is physically near SW2.

7
6
5
4

0
1
2
3

SW4

7
6
5
4

0
1
2
3

SW5

7
6
5
4

0
1
2
3

SW6

7
6
5
4

0
1
2
3

SW7

SW3

SW2

SW1

SW0

N14 J34
N13 J33
N10 J32
N9 J31

N6 J10
N5 J9
N2 J8
N1 J7

N3 J26
N4 J25
N7 J24
N8 J23

N11 J18
N12 J17
N15 J16
N16 J15

J3
J4
J5
J6

J27
J28
J29
J30

J11
J12
J13
J14

J19
J20
J21
J22

To Nodes

Bulkhead Jacks Bulkhead Jacks

To Switches
PLL-3

OSC-2PLL-2 PLL-5

PLL-4 OSC-4

4
5
6
7

3
2
1
0

3
2
1
0

3
2
1
0

3
2
1
0

4
5
6
7

4
5
6
7

4
5
6
7

18 Understanding and Using the SP Switch

When more than one switch board is present in the system, one is selected to
be the master board that uses its internal oscillator and then distributes the
clock to all the slave boards. On each slave board, one switch chip acts as a
master chip receiving the clock from the master board and distributes it to the
remaining seven switch chips.

For each slave board, one switch chip is selected to receive the source clock
at one port. If it has a PLL, it shapes the signal and re-drives it to all the other
switch chips, acting as a master chip for the board, otherwise it does not use
the signal but forwards it to the master.

All the data cables that connect a switch board to another board or to a node
also carry a clock signal. Each switch chip always sends the clock it uses
along with the data. Data and clock are carried by different wires. Therefore,
each switch chip on a slave board receives four different clock signals from
four sources.

ISBs may receive a clock signal from any port of any switch chip, while NSBs
may only receive it from SW0, SW1, SW3 or SW4 since the other switch chips
are dedicated to node connections.

Any switch chip’s port can be selected to receive the clock signal. However, if
you look at clock distribution files, PSSP software always uses jacks J3, J4 or
J5. This limitation is for compatibility with the High Performance Switch that
has limited clock distribution capabilities.

Clock distribution files only mention in the description part the ports of a
switch chip provided with a PLL, but a system administrator can decide to use
any other port, and provide a corresponding configuration file.

Both master and slave switch boards can provide a clock signal to other slave
boards, creating a clock distribution tree, as you can see in Figure 14.
Communication Network Hardware 19

Figure 14. Clock Distribution Tree

It is important for the system administrator to know how the clock is
distributed and that a problem on a single cable or the power off of a switch
board may also affect other switch boards.

3.3 STI Timing and Logic Synchronization Process

Communication between two switch chips, or between a switch chip and a
node adapter, must be synchronous, and the two sending and receiving ports
must sample data in the channel in the same way. All switching elements and
the node adapters share a common clock, but due to propagation time
through the links, the clock phase may not be exactly the same.

A hardware phase-tuning procedure is invoked during system initialization to
adjust the capture time of each data bit at the receiving side, so that it is

Slave Switch Boards

Board 3

Master Switch Board

Board 1

Board 4

Board 6

Board 2

Board 5

The clock signal is of vital importance to the SP Switch.

If a switch board does not receive the clock signal, none of its internal and
external data links will be functional and all the switch boards that depend
on it for the clock will also fail in the same way.

For example, if the cable from Board 1 to Board 3 in Figure 14 on page 20
is unplugged then Board 3, Board 5, and Board 6 will not receive the clock
signal and will stop working.

Important
20 Understanding and Using the SP Switch

sampled at the correct time. This makes adjusting cable length unnecessary
while maintaining high link bandwidth.

Each port of a single switch chip has to be independently synchronized with
the corresponding port of the neighbor switch chip since each link has to be
treated independently.

The synchronization process uses the same wires used by the
communication link (see Figure 12 on page 16), and it is run just before data
can be transmitted. The receiver is considered the master. It receives data
and clock signals from the sender (slave) port on the other end of the link,
and returns signals on the token line to the slave unit.

The initialization sequence can be started by either the master or the slave
side of the link. The sequence will start in response to a reset of the port due
to power on or chip reconfiguration, or by the detection of one error condition
on the link. If the synchronization process fails for any reason, it is restarted
again.

Once the link has been synchronized, data can flow between the sender and
the receiver. The STI macro follows the signal phase and continuously tunes
the channel.

A new synchronization process may be needed due to link errors or link delay
variations that cannot be tuned out. When the STI macro detects that the
phase of the data is nearing the edge of the guard band defined by the
current setting of the delay elements, or when the receiver logic determines
that there is an error on the link such that the incoming data is suspect, the
receiver transmits a synchronization request code to the sender. The sender
decodes this code and at the end of the current packet, the synchronization
process is started again.

3.4 The Switch Chip

The switch chip is the heart of the switching network. Several chips are
connected together in order to create a multistage switching network that
allows data to flow from one end to the other with very high performance.

Chips are connected by bidirectional channels that operate at a peak
bandwidth of 150 MBytes/second in each direction, while aggregate switch
chip bandwidth is 1.2 GBytes/second with minimum or no network contention.
The chip latency is less than 300 ns.
Communication Network Hardware 21

Reliability is a crucial consideration in the architecture of large networks. For
this reason, the SP Switch is designed to detect and isolate network or chip
failures with minimal additional circuitry. Link failures are first handled by the
switch chips without propagating them to the rest of the network. Recovery
actions are started and normally the link resumes operation. Data that was
passing on the faulty link is buffered in the upstream path.

When problems are not recovered by switch chips, administration software
(the fault service daemon, see 4.7, “Fault Service Daemon” on page 64)
disables the single link and re-routes traffic away from it. The use of
redundant network topology makes it possible to continue operation even in
the presence of multiple channel faults.

Communication subsystem protocols provide the packets with end-to-end
protection as well, as described in Chapter 3, “Communication Network
Hardware” on page 13.

The switch chip contains 8 receiver modules, 8 transmitter modules and a
Central Queue. The switch ports send and receive one byte at 150 MHz
frequency. Due to the internal clocking of 75 MHz, the switch chip has to
manage two bytes at a time of data coming from the link in order to follow the
higher clock source of the link. Each such two-byte quantity is called a flit.
22 Understanding and Using the SP Switch

Figure 15. Switch Chip Components

The received flits of a data packet are inserted into the Central Queue from
where the sender module can extract and transmit them when it is not busy
sending another packet. When more than one packet is directed to the same
output port, flits from the first packet are immediately extracted from the
Central Queue, while the others remain in the queue waiting for the first
packet to finish.

Flits from a service packet directed to the switch chip are routed directly into
the chip’s service logic.

3.4.1 Receiver Modules
There are 8 receiver modules in the switch chip, each listening to incoming
data on its respective link of the chip.

The receiver logic of the switch is responsible for taking data off the link,
synchronizing the data with the chip’s clock, and routing that data to the
appropriate sender port via the Central Queue buffer. The receiver also
routes service packets to the chip’s service logic if the packets are destined
for that chip. The receiver controls the data flow through the link using a
token-based flow control implementation, where it transmits a token signal to

S
T
I

S
T
I

S
T
I

S
T
I

S
T
I

S
T
I

S
T
I

S
T
I

S5

S4

S7

S6

S1

S0

S3

S2

R5

R4

R7

R6

R1

R0

R3

R2

S
T
I

S
T
I

S
T
I

S
T
I

S
T
I

S
T
I

S
T
I

S
T
I

Central Queue
and

Queue Control
(4 KB)

Service Logic

SendersReceivers
Communication Network Hardware 23

the sender each time it is able to receive one more flit. The sender counts the
tokens received to know how many flits can be sent.

In this section we describe some details of the receiver components. Use
Figure 16 as a reference.

Figure 16. Receiver Modules Components

The data and clock synchronization is accomplished by the Self-Timed
Interface (STI) physical receive macro as described in 3.3, “STI Timing and
Logic Synchronization Process” on page 20. Data arrives at the STI a single
byte wide, but at twice the internal operating frequency. The STI aligns the
bits into the proper byte and presents the logical receiver with a flit every
internal clock cycle.

As the data enters the receiver, it is checked for correctness. All bytes
transmitted across the link (packets and control characters) are protected by
a time-based, two-byte Error Detection Code (EDC). The transmitted data
and the two-byte EDC code are read from the STI interface and run through
the EDC checker. EDC errors can be reported when they happen or when the
number of errors has reached a programmable threshold. If the threshold is
reached, the link is reset.

A parity bit is internally used by the switch chip to protect each byte of data
that flows through it. The bit is generated by the receiver module and checked
by the sender module to avoid data corruption inside the chip.

Data read from the STI interface is written into a 64-flit size RAM array with
one write and one read port; this is used as a FIFO. The purpose of the array
is to buffer the packet data if the flow to the sender is somehow delayed; for

STI

Token
Generation

EDC
Checker

FIFO
Route

Modification
DeserializerLink

Central Queue

State
Machine

Parity
Generation

Service logic
24 Understanding and Using the SP Switch

example, waiting for arbitration to write into the Central Queue buffer. A
receiver state machine controls the reading and writing of the FIFO, as well
as all other operations on the module.

The size of the array is determined by calculating the maximum number of
token credits that can be outstanding at any given time. The total number of
tokens in the system must be greater than the required number in order to
keep the links running at full bandwidth in the worst case.

Each time a single flit is extracted from the FIFO, a token signal is transmitted
back to the sending module to inform it that there is one more space
available.

Taking into account cable and wire length, propagation delays and clock
cycles for STIs and token management on both sides of the link, the optimal
number of tokens is 47. In order to allow significant buffer for possible
implementations with longer cables and faster links, the array size was
chosen at 64 tokens.

If the FIFO becomes full and valid packet data is received on the link despite
the token protocol, the FIFO overflows and packet data is lost. The packet
currently in transmission is terminated with a packet fail character and the
receiver module resets itself, starting a re-initialization of the link with the
sender.

A packet ending with a packet fail character may be transmitted over the
switch network to the destination node or chip where it will be treated
accordingly. There is no other way to handle this kind of packet problem since
the preceding data has already been transmitted to the following stage of the
network.

In order to prevent an overflow of the FIFO due to link errors, two tokens less
than the physical FIFO size are used on the link. In this way the link can gain
up to 2 flits through link errors without data loss. When a third flit is gained,
then the FIFO overflows.

The route modification stage uses the packet’s route information to decide if
the packet is destined to the switch chip or to which sending module it has to
be passed. The route information is also modified to make it usable by the
following switch chip.

The receiver is concerned only with the first route flit it encounters, defined as
the flit following the BOP control character. Each route byte contains one or
two route values. So in each flit, up to four route values may be present. Once
the receiver decodes the route value to be used, it invalidates that value.
Communication Network Hardware 25

BOP comes in two forms, BOPa and BOPb, to tell the chip which byte of the
following flit is to be used. BOPa is used when the route byte is in the most
significant byte (high byte), and BOPb is used when the route byte is in the
least significant byte (low byte).

A route byte is depicted in Figure 17, and it contains two route values.
Depending on the value of the most significant bit, bits 1 to 3 or bits 5 to 7 will
be processed as the next route data.

Figure 17. Route Byte

The parity bit in the route byte is used as an extra check on the correctness
on the byte. If a parity error occurs, the receiver would no longer know how to
direct the packet, so it simply dumps it without routing it.

When bits 1 to 3 contain the current route value to be used (the MSB bit is 0),
that choice must be invalidated. This is done by setting the MSB bit to 1 and
passing the modified route byte with the packet. When route modification
logic encounters a route whose MSB is 1, bits 5 to 7 are decoded as the
route. Since there is no more useful information in this byte, the entire byte
has to be invalidated. If it is the first (high) byte of the current flit, the packet
will exit from the switch chip with a BOPb character. If it is the second (low)
byte, all data in the flit has been used and the flit is not passed on.

As the packet passes through switch chips, all the route bytes get used and
discarded. A packet reaches its destination with no route bytes.

As seen in Figure 15 on page 23, after route modification, the data is ready
for transmission to the service logic (if the destination is the current switch
chip) or to the sending port through the deserializer for buffering into the
Central Queue.

The Central Queue is a 4 KByte array with one read and one write port; since
there is only one write port and eight receivers requesting its resources,

(LSB)0 1 2 3 4 5 6 7

h lh h ll

0 : Use m ost significant nibble (hhh)
1 : Use least significant nibble (lll)

odd route parity

(M SB)
26 Understanding and Using the SP Switch

arbitration is required. Those ports requesting Central Queue’s resources that
are denied access continue to receive packet data while they wait.

The deserializer takes care of arbitration and is constructed to introduce
minimal delay for Central Queue access waiting, buffering flits from the route
modification circuit and acting very efficiently in sending flits to the Central
Queue.

The use of a Central Queue instead of several local buffers on the receivers
makes it possible to allocate more buffer space to the most active receiving
ports, reducing the probability that a receiver does not have any more buffer
space available. As long as the Central Queue is not full, each input port can
continue to receive flits at full bandwidth. If the Central Queue eventually fills,
input ports with flits destined for the Central Queue are not able to empty their
input FIFO queues, and a lack of tokens causes the associated upstream
output port to be blocked.

The receiver state machine is the brain behind the operations of the receive
port. By having a state machine on each port, faults are better isolated and
recovered locally, without affecting the remainder of the chip function. All the
logic in the receiver is controlled by the receiver state machine. Each state
defines what is currently happening within the receiver.

The receiver may be in one of the following major states:

 • Disabled

 • Tuning

 • Operational

 • Service

The disabled state may be entered for several reasons, among them being a
port/chip reset, the link has been disabled, an error occurred or the sender
has requested a link synchronization. The reset and link disabling are
requested by the supervisor, while errors are internally generated.

A link enable bit is associated with each receiver. When the receiver port is
not enabled, it does not respond to the synchronization request from its
corresponding send port, and actually isolates the send port from the rest of
the switch fabric. It defaults to active during switch chip initialization, but may
be changed by a service packet.

The disabled state is used by the receive logic to set the state machine in a
known state. If the link enable bit is active, the STI starts a a synchronization
process (see 3.3, “STI Timing and Logic Synchronization Process” on page
Communication Network Hardware 27

20) with the sending port while internal counters and pointers are reset, and
the state machine goes into the tuning state.

In the tuning state, the STI proceeds in its signal exchange with the sending
port in order to synchronize with it. If any error is detected, the state machine
returns to the disabled state and all synchronization restarts from the
beginning. As soon as the STI identifies a living sender and it is aligned with
its clock phase, the state machine goes into the operational state.

While in the operational state, the data packets are received and transmitted
to the proper destination. The receiver waits for a BOP character and the
route bytes are analyzed to define which sending module has to manage the
packet.

If a parity error is detected in the route byte, the error is reported, all flits up to
the EOP are discarded, and the port waits for the next BOP.

If a timeout occurs while waiting for the EOP character, the state machine will
append a packet fail character to the packet and will restart waiting for the
BOP. The packet fail character will indicate the end of the packet and will tell
you that the packet has to be discarded.

A packet’s end is detected either by a EOP or a packet fail character. If a
second BOP is received, the receiver first inserts a packet fail character, then
proceeds with the second BOP looking for the route byte.

If the received packet is a service packet sent to this switch chip, the receiver
module reads a special character after the BOP character. The data portion
of the packet is then passed to the chip’s service logic and the state machine
makes a transition into the service state.

3.4.2 Sender Modules
There are 8 sender modules in the switch chip, each taking care of data to be
sent out of its respective output port.

The sender logic of the switch is responsible for taking the packet data out of
the Central Queue or from the service logic and transmitting it across the
cable or board to the receiver on the adjacent switch chip. The sender can
only transmit data when it has received valid tokens from its corresponding
receiver indicating that the receiver has room to handle it.

In this section we describe some details of the sender components. Use
Figure 18 as a reference.
28 Understanding and Using the SP Switch

Figure 18. Sender Module Components

The selection stage of the sender module is driven by the state machine that
defines from where data has to be taken and sent to the output port. Data
from the selector is passed into the sender’s FIFO.

The purpose of the FIFO is to smooth out the data flow from the selector into
the reminder of the sender logic. It is a 16-byte Register Array with one read
and one write port. There are times when the normal data flow through the
sender must be stopped for a while, for example, to insert EDC bytes. When
these interruptions occur, data is buffered into the FIFO and the source
continues to transmit.

Each byte of packet data being transmitted through the switch chip is
protected by a parity bit. Parity is checked just before data enters the sender
data selector, from which it is launched from the chip. Parity errors that are
detected are reported to the service logic to enable problem isolation. The
packet is transmitted as it is and data flow is not interrupted. Because of this,
parity errors on data will also show up as CRC errors inside the data at the
destination processor nodes. Care must be taken when CRC errors are
detected to ensure the fault is isolated to the proper place.

The sender module is in charge of creating the EDC frames used to check the
correctness of communication on the link. It inserts the EDC values that will
be checked by the corresponding receiver module.

The output data selector generates the data to be sent on the link depending
on the state of the sender. It will transmit packet data, EDC bytes or control
characters to the receiver module.

T o k e n
C o n tr o l

E D C
G e n e ra to r

O u tp u t
S e le c tS e le c to r L in kF IF O

S e rv ic e p a th

S ta te
M a c h in e

P a r ity
C h e c k

C e n t ra l Q u e u e
Communication Network Hardware 29

The Token-In control logic is used both on link initialization sequence
checking and for normal operation token protocol. The received tokens cause
the token counter to be increased by one, and each time a flit is transmitted
out into the link, the token counter is decreased by one. The counter is
initialized during link initialization. It can count up to the size of the receiver
module’s FIFO.

If the token counter is at maximum value, a token is detected and a flit is not
simultaneously transmitted across the link, the token counter will signal a
token overflow error. The counter, however, will not overflow and will remain
at the maximum count. By design, the counter cannot underflow since a token
count of zero will not allow packet data to be transmitted, and transmitted
data is what decrements the counter. The token protocol is designed to check
if tokens are missing, and to realign sender and receiver counters.

Token transmission errors may occur on the token line in the form of wrong
token sequences. If this happens, an internal error counter is incremented
and if a pre-defined threshold is reached, a token error character is sent to
the receive logic and the link is re-initialized.

The sender’s state machine is the "brain" that governs the operation of the
send port. By having a state machine on each port, faults are better isolated
and recovered locally, without affecting the remainder of the chip function. All
the logic in the sender is controlled by the sender state machine, and each
state defines what is currently happening within the sender.

The sender may be in the following major states:

 • Disabled

 • Tuning

 • Operational

The disabled state may be entered for several reasons including a port or chip
reset, disabling of the link, or a request for a synchronization by the receiver.

A link enable bit is associated with each sender. When the sender port is not
enabled, it does not transmit any valid packet to its corresponding receive
port and actually isolates that receive port from the rest of the switch fabric.
No token signals are processed when the link is disabled; flits that should use
the port are discarded and an invalid route error is notified to the service
logic. The link enable bit defaults to active during service initialization, but
may be changed by a service packet.
30 Understanding and Using the SP Switch

The disabled state is used by the receive logic to set the state machine in a
known state. If the link enable bit is active, the synchronization process with
the receiving port is activated, internal counters and pointers are reset, and
the state machine goes into the tuning state.

In the tuning state, the synchronization process is active and if any error is
detected, the state machine returns to the disabled state and all
synchronization restarts from the beginning. When the process ends, the
sender module receives a specific signal from the token line and the state
machine goes in the operational state.

The operational state indicates that the entire link is active and the sender is
either waiting for or already busy handling packets coming from the Central
Queue or the service path. Tokens received in this state increment the token
counter and each flit sent out the port decrements the counter.

The priority for accepting packets to be transmitted is the following:

1. Service packets

2. Central Queue packets

Service packets have priority over all other packets, and other packets have
to wait for service to be transmitted. By service packets we mean the packets
generated by this switch chip and not packets that have been received by a
switch chip’s input port, since all data coming from other ports is treated in
the same way.

When the service logic is not ready to send any service packets, the source
selector checks if there are new packets buffered in the central queue and
starts to extract the flits from queue into the FIFO.

If the sender module is transmitting a packet, it continues until the packet is
completely sent, even if higher priority packet is waiting. Priority is only
checked when deciding which new packet has to be sent; it never interferes
with packets already on the link.

3.4.3 Central Queue
Any packet from a receiver module is buffered in the switch Central Queue.
The queue is a 4 KB RAM with one read port and one write port. On any
given cycle a write to the array, read from the array or simultaneous read and
write may occur.
Communication Network Hardware 31

The access logic has to arbitrate among multiple read requests from the
senders and multiple write requests of the receivers. This arbitration is made
using a least recently used algorithm (LRU).

The packet data written to and from the array is grouped into eight chunks
representing 16 bytes of packet data, and is moved at chunk size to reduce
latency of the buffering operations. Each chunk is defined as either a header
chunk (the first chunk associated with every packet) or a continuation chunk
(all the chunks following the header chunk inside the packet).

To prevent "starvation", receivers requesting service from the Central Queue
are divided into two groups: those offering critical chunks and those offering
non-critical chunks. A critical chunk is one that is ready for immediate
forwarding to its destination transmitter. The first chunk of a new packet is
critical if no other packets are queued for its transmitter. A continuation chunk
is critical if all previous chunks of the packet have been forwarded to the
transmitter. Chunks not immediately ready for forwarding are called
non-critical.

One chunk of the Central Queue storage is reserved for each transmitter and
it is called the emergency slot. The remaining Central Queue storage is
shared. Whenever a receiver has a non-critical chunk and space is available
in the shared pool, the receiver requests service from the Central Queue.
Whenever a receiver has a critical chunk, it requests service and the chunk is
put in the transmitter’s emergency slot. Priority is assigned to the receivers on
a least recently serviced basis.

The emergency slots provide a way for the receiver to transmit the packet
data the sender is waiting for into the Central Queue buffer, even when the
buffer appears full, thus avoiding deadlocks. There are special cases where
the Central Queue buffer may become full: the emergency slots ensure that
all critical chunks are sent to senders.

3.4.4 Service Logic
Any service packet received by the switch chip from any of its eight ports and
destined to the switch chip itself is passed to the service logic.

The service packet looks exactly like any other message packet to a receive
port until all the route bytes are used by previous switch chips. In this case
the service frame character (SVC) is detected right after the BOP and the
receiver routes the data of the packet to the service logic (see Figure 19).
Each byte transmitted has a tag added to it which identifies it as a data
character or a control character.
32 Understanding and Using the SP Switch

Figure 19. Service Packet Format

Since a service packet can come into the chip through any of the eight
receive ports, the service logic must be able to accept the service data from
any of these ports. It is assumed that only one receiver module transmits a
service packet to the service logic at any given time. If two or more packets
are received into the service logic simultaneously, they are all accepted
(logical OR of their data), producing an invalid length, invalid command, and
CRC error, and an error packet is sent. This causes the service logic to
discard the packet as if it has never been received. It is up to the packet’s
sender to detect that data has not been received and a new packet has to be
sent.

Normally the logic is idle, waiting for an incoming command or an internal
error that has to be reported. There are five possible incoming messages and
only one report message. When an incoming message has been correctly
processed by the service logic, a report message is sent like an
acknowledge. See Appendix A, “SP Switch Service Interface” on page 227 for
more details.

The initialization packet contains the information that has to be loaded into
the switch chip’s configuration registers. It sets information such as which
receive and send ports are enabled, the route to be used when sending a
report message, and the switch chip identifier.

The read status packet is used to make the switch chip send back a complete
report message with its current status.

The reset packet requests a reset of selected error registers and logic on the
switch chip. This message is required to receive notification of secondary
error events as described in 3.4.5, “Error Isolation” on page 34.

Two time-of-day (TOD) packets are used to define and propagate to all switch
chips a value, the TOD, that is maintained synchronously in the whole SP
Switch to make problem determination and error isolation easier. The TOD is
increased at each switch chip’s internal clock tick.

EOPDataRouteBOP SVC
Communication Network Hardware 33

As a result of incoming service packets, or after the detection of an internal
error, the service logic generates an error/status packet containing all the
error and status information on the switch chip. Two identical packets are sent
with the same data but with different routes to a specific node called the
primary node. If no previous initialization packet with such routes has ever
been received, the packets are not sent.

When the service logic is busy preparing and sending an error/status packet,
it cannot process any incoming service packets. They are discarded until the
switch chip has sent the message.

3.4.5 Error Isolation
Internal error isolation logic is present on the switch chip to capture the first
error that occurs. Subsequent errors are also recorded, leaving an error trail.

Upon detection of the first error, an error/status service packet is sent to the
primary node, and succeeding errors are not reported spontaneously until the
primary node has handled the error condition and has cleared the error with a
reset packet.

There are three multibyte error registers that have to be considered when
getting the report from the switch chip. Each bit of each register indicates a
separate error present.

The first error capture register is where the first occurrence of any error is
stored. It marks the kind of error present.

The second error capture register details exactly where the error indicated in
the first error capture register occurred, as well as where any subsequent
errors occur. It will continue to accumulate errors until it is reset by a reset
service packet.

An important consideration on internally generated error/status packets is
that two of them cannot be sent by a switch chip without an intervening
reset packet being received from the primary node. This keeps the switch
chips from flooding the switch fabric and the primary node with service
packets. It also requires the primary node to manage all incoming signals
and explicitly reset them.

Important
34 Understanding and Using the SP Switch

For a bit to be set in the first error capture register, no other bit can be active
in the entire register. Once a bit has been set, no other bits may be set until
the contents of the register are reset back to logic 0 by a service reset packet.

When an error is detected by the switch chip, the corresponding bit in the
second error register is checked. If the bit is already set, the error has already
been addressed, so no action is taken. If the bit is not set, the error is added
to the register and the first error register is checked. If first error register has a
value of zero, this is the first error and the corresponding bit is set; otherwise
the register is not changed.

The pending error capture register is a shadowed version, bit for bit, of the
second error capture register. This register is used to ensure that errors
occurring between the reporting of previous errors (in an error/status packet)
and the service reset packet that should clear those earlier errors are not lost
because of the service reset packet. The contents of the pending error
capture register are not transmitted in an error/status packet, but are copied
to the second error capture register when servicing a reset packet.

A more detailed description of the error registers content can be found in A.2,
“Error Registers” on page 242.

3.5 Switch Supervisor Functions

Each switch board of the SP Switch has its own switch supervisor card from
which it is configured and monitored. Each switch supervisor card is
connected to its respective frame supervisor to provide the following functions
for the board:

 • Board clock selection

 • Board status monitoring

 • Board reset

 • Fan rotation sensing

 • Power supply monitoring and control

 • Board level sensing

 • Board configuration sensing

3.5.1 Board Clock Selection
The selection of the clock configuration in the switch board is made by the
supervisor card. It defines which is the master switch chip of the board. On
Communication Network Hardware 35

master boards it chooses the internal oscillator, while on slave boards it
selects which port of which chip is to receive the external clock signal.

The supervisor sends signals to the switch chips in order to configure them
according to the requests coming from the Control Workstation via the frame
supervisor. When powered on, it sets the internal oscillator (OSC2) as the
clock source on the board, until otherwise configured.

3.5.2 Board Status Monitoring
The supervisor monitors the key activities of the switch board and some
environmental parameters, providing them to the system administrator as
variables that can be displayed with commands like spmon and hmmon.

3.5.3 Board Reset
The supervisor interface is also responsible for the switch board’s
power-on-reset (POR). The POR sequence of the switch chip is as follows.

1. The supervisor asserts POR signal to the board

2. The POR opens each switch chip’s A-clock and B-clock, flushing the
storage elements to a known state (all logic zero)

3. The POR signal goes inactive

4. The switch chip’s Built-In Self Test logic takes control of the chip

5. At the end of self test, a synchronous reset is generated internally to the
chip, resetting and presetting all registers

6. The Self-Test Complete signal goes active and the POR sequence is
complete.

Self-Test takes approximately two seconds to complete.

3.5.4 Fan Rotation Sensing
As previously mentioned, there are five cooling fans in the switch board
assembly. The rotation of these fans is monitored by the switch supervisor. If
one fan is not working, the switch supervisor will notify the system monitor of
an environmental warning. If fans are not enough for switch cooling, the
switch supervisor will turn off the power to the switch board assembly, and
notify the system monitor of an environmental failure.

There is N+1 fan redundancy in the switch assembly. If a fan fails, the
maintenance on the switch is deferred to an acceptable time, instead of
causing an entire switch board incident, affecting multiple nodes and possibly
other switch boards. The fan assembly is also a Field Replaceable Unit (FRU)
36 Understanding and Using the SP Switch

of the switch assembly, that is, it can be changed without replacing the entire
switch assembly, helping to reduce the maintenance cost of the switch board.

3.5.5 Power Supply Monitoring and Control
As previously mentioned, there are two power supplies in the switch
assembly which share the load required by the switch board. The power
supplies take 48 volts as an input and produce 3.3 volts to the switch board.
The switch supervisor monitors three things:

 • The availability of the 48 volts

 • The current usage of each of the power supplies

 • The output 3.3 volts of the power supplies

If the switch supervisor detects that the 48 volts is available, it enables the
power supplies to provide the 3.3 volts to the switch board. If the current
levels monitored by the switch supervisor move out of the valid operating
range, the supervisor will turn that power supply off. Likewise, if the output
voltage sensors indicate the 3.3 volts is not within the valid operating range,
the power supplies will be shut off.

The second power supply is redundant in the switch assembly. If one of the
power supplies fails, the maintenance on the switch is deferred to an
acceptable time, instead of causing an entire switch incident, affecting
multiple nodes and possibly other switch boards. Each power supply is also a
Field Replaceable Unit (FRU) of the switch assembly.

3.5.6 Board Level Sensing
The switch supervisor card has the ability to sense the current version of the
switch board being used. This becomes necessary if the software running in
the system is switch board version-specific. Currently there are several levels
of the switch board; however, only the last version is shippable to the field.

3.5.7 Board Configuration Sensing
An SP Switch board can be assembled with two different configurations: the
full switch has 32 input ports and 32 output ports, while the low-cost version
for entry-level systems has 8 input ports and 8 output ports. The switch
supervisor senses which configuration is in the system.
Communication Network Hardware 37

3.6 The Switch Adapters

The switch adapters are the interface between the SP Switch and the
RS/6000 node. They are connected to a switch chip and the node’s internal
bus and have the purpose of checking and reformatting data to make
software on the node receive and transmit messages with other nodes or
switch chips.

There are different kinds of adapters, depending on the bus type on the
RS/6000. Their internal structure changes among them due to technology
improvements and to bus architecture differences. The functions they perform
are, however, the same since the software present on the RS/6000 is the
same except for the peculiarities introduced by the system bus.

The adapters known at the time of the writing are:

 • TB3, used in microchannel nodes

 • TB3MX, for nodes whose adapter is put on the memory bus

 • TB3PCI for nodes that have the adapter in a PCI bus slot

 • TB3MX2, an evolution of TB3MX

3.6.1 TB3 Adapter
The TB3 adapter internal structure is described in Figure 20.

Figure 20. TB3 Adapter Structure

This adapter is used in all microchannel MCA-based RS/6000 nodes. It has a
Trail Blazer Interface Chip (TBIC) that manages the link with the switch board
in the same way a switch chip does, and it connects to the adapter’s internal
bus. On the other side is the microchannel interface with the node’s memory.

512 KB
SRAM

80 MHz
601

2 x 4 KB
FIFO TBIC S

T
I

160 MB/sec
MCA bus

Xilinx

150 MB/sec
fabric

Xilinx

MCA interface

TB3 Adapter
100 MB/sec sustained rate
38 Understanding and Using the SP Switch

A bidirectional FIFO in the middle of the bus is used to buffer data while DMA
transfers occur between the microchannel bus (left-hand DMA) and the TBIC
(right-hand DMA).

The heart of the adapter is an 80 MHz 601 PowerPC with 512 KBytes of
SRAM.

The sustained data rate for this adapter is 100 MB/sec.

3.6.2 TB3MX Adapter
The TB3MX adapter is an adapter used in PCI nodes that can plug into the
memory bus to gain higher performance. It is represented in Figure 21.

Figure 21. TBMX Adapter Structure

It is a redesign of the TB3 adapter for the MX bus of the node. The most
significant difference is the replacement of the MCA interface with an MX bus
interface achieved with the MX Bus ASCI chip (MBA). Other significant
differences are:

 • 100 MHz PowerPC 603e (instead of the 80 MHz PowerPC 601)

 • Internal bus operates at 50 MHz (instead of 40 MHz)

 • New TBIC-2 chip replaces old TBIC

 • 50 MHz 60x interface

 • 4 MB send buffer

 • IP checksum generation logic

The MBA chip provides both the MX bus interface and buffering for DMA
operations between the MX and 60x buses.

512 KB
SRAM

100 MHz
603e

TBIC2 S
T

I

400 MB/sec
MX bus

150 MB/sec
fabric

Xilinx

TB3MX Adapter
200 MB/sec sustained rate

MBA
2 x 4KB FIFO
Communication Network Hardware 39

3.6.3 TB3PCI Adapter
This adapter is used in those systems that are connected to the switch board
using a PCI adapter. The design of the adapter is shown in Figure 22.

Figure 22. TB3PCI Adapter Structure

The interface with the PCI bus is made by an AMCC chip, and a TBIC-2 is
used to connect to the switch board. An internal bidirectional FIFO is used as
in the TB3 adapter. The internal components are:

 • 99 MHz 603e PowerPC

 • 512K SRAM

 • Single eight-byte 33 MHz bidirectional internal bus

Due to limited bandwidth in the PCI bus, the sustained bandwidth is 85
MByte/s.

3.6.4 TB3MX2 Adapter
TB3MX2 is the latest version of the adapter to be used in nodes implementing
an MX-type bus connection to the node's processor and system memory. Its
design is shown in Figure 23 on page 41.

512 KB
SRAM

100 MHz
603e

AMCC
S5933 TBIC2 S

T
I

132 MB/sec
PCI bus

Xilinx

150 MB/sec
fabric

Xilinx

TB3PCI Adapter
85 MB/sec sustained rate

2 x 4 KB
FIFO
40 Understanding and Using the SP Switch

Figure 23. TB3MX2 Adapter Structure

This adapter is a modification of the original TB3MX adapter. It includes more
robust MX bus drivers within the MBA chip and allows the node to use either
a 64-byte or a 128-byte cache line. The change allows the adapter to operate
with a 66 MHz MX bus rather than the 50 MHz figure specified in the original
design.

It also enables attachment of additional devices on the MX bus. The adapter
may be used in any node implementing an MX bus.

Its main characteristics are:

 • 150 MB/s port to SP Switch (each direction)

 • MX bus attachment to node

 • 8-byte 66 MHz bidirectional multiplexed address/data interface

 • DMA uses real address translation by adapter microcode

 • Its internal components are:

 • 100 MHz 603e PowerPC

 • 512K SRAM

 • TBIC-2 logic using CMOS 5L 10.9mm chip

 • MBA logic using CMOS 5L 10.0mm chip

 • Single 8-byte 50 MHz bidirectional internal bus

3.6.5 Data Flow
The adapter’s hardware and microcode interact with the communication
subsystem (CSS) software on the RS/6000 node. Data is transferred through

512 KB
SRAM

100 MHz
603e

TBIC2 S
T

I

400 MB/sec
MX bus

150 MB/sec
fabric

Xilinx

TB3MX2 Adapter
200 MB/sec sustained rate

MBA
2 x 4KB FIFO
Communication Network Hardware 41

the MCA, MX or PCI busses in both directions using DMA, and several data
structures on the adapter are directly read and modified by CSS using ioctls.

On the RS/6000 there are several independent environments called windows
that send and receive data to and from the switch. There are three different
kinds of windows:

 • IP

 • Service

 • User space

The IP window is responsible for the IP communication among nodes; the
service window manages configuration and monitoring of the switch network;
the user space windows permit high-speed data communication among user
applications. In PSSP 3.1 there are up to four user space windows available
for each node.

Each window has its own receive FIFO (rFIFO) and send FIFO (sFIFO) in the
node’s main memory. The window uses these FIFOs to store application
packets before they are received from (rFIFO) or sent to (sFIFO) the switch
adapter. These structures are also available to the adapter’s microcode,
which uses them to move packets to and from the RS/6000 main memory to
the adapter’s TBIC FIFO, using DMA.

Each window has a set of variables that describe the status of its FIFOs, like
the position of first available packet and the number of packets. These
variables are available to both windows and adapter microcode and are used
to properly transfer data to and from the window’s FIFOs and the adapter.

The internal structure of different adapters may vary, but they all share a
common basic structure as shown in Figure 24 on page 43. The adapter has
a bidirectional FIFO where packets from the windows’ send FIFO are put
before these packets are sent to the adapter’s TBIC FIFO on their way to the
switch network. All data transfers are made by DMA engines on the adapter
under the control of the adapter’s microcode.
42 Understanding and Using the SP Switch

Figure 24. Adapter Logical Structure

After packets arrive from the SP Switch, another DMA engine moves the data
from the TBIC FIFO directly to the windows’ receive FIFO. The microcode
uses its internal tables to create the correct switch routing information for
outgoing packets, and to send incoming packets to the correct window on the
SP node.

The packet coming from the sFIFO of a window has a 1 KByte maximum size
and has the following structure:

 • Header

 • Destination node identifier

 • Destination route

 • Data

The data contained in the packet is formatted according to the layer that
manages the communication at the sFIFO level (see Chapter 4,
“Communicating with the SP Switch” on page 49 for more details about User
Space).

The header is used by the microcode to create the real route bytes that are
used by the switch chips to transport the data. A set of tables in the SRAM of
the adapter contain all the information needed to identify the destination and
the correct route, depending on the window type.

When a user space window packet is passed into the adapter’s FIFO, the
destination node of the header is a logical identifier and not a node number.
The user process does not have to know which the SP system topology is or

sFIFOrFIFO

user space
 windows

sFIFOrFIFO

IP window

sFIFOrFIFO

service window

MCA, MX or PCI
bus

Switch Adapter

switch

bidirectional FIFO
TBIC

FIFO

SRAM Processor
Communication Network Hardware 43

where the destination is: it requires to communicate with a given process that
has a given identifier.

The distribution of jobs in the SP system is handled by special job managers,
such as Load Leveler for AIX. The presence of such managers makes it
possible to better distribute loads on several nodes and to simplify the
application processes. The job manager is responsible for defining in which
nodes the processes that have to exchange messages are started, and tells
the adapter’s microcode how these job are distributed. Before starting any
job, the manager creates for each user space window a table in the adapter’s
SRAM that gives, for each logical destination of the window, the following
information:

 • Physical destination node

 • Destination process’ window

 • Key

The pair destination node and window make it possible for the receiving node
to correctly dispatch the incoming packet. The key field is a unique value that
is used by the communication between two windows. No other windows,
including IP and service, have the same identifier.

The use of the key ensures that a process never receives a packet from a
wrong sender. A new job uses the window that was previously allocated to
another job and processes may be not aware yet that the window has
changed identity. So wrong packets may be sent to the new job, but since
they have a different key, they are discarded by the adapter.

The route field of the header is used to select one of the four shortest paths to
the destination. The message libraries that user processes use do not know
the actual route, but they are aware that four different choices are available,
so they make use of all them, creating packets that continuously change the
route number. This helps maximize throughput in the network.

The adapter has a complete route table that gives the four shortest paths to
each available node in terms of switch chip ports that are used to create the
packet’s route to destination. This table is created and updated by the fault
service daemon that runs on the node.

Once a user space packet is put on the adapter’s FIFO and is selected to be
transmitted, the microcode sends the SP Switch packet feeding the TBIC first
with the all the information needed for the routing of the packet, and then with
the data that is present on the adapter’s FIFO.
44 Understanding and Using the SP Switch

The structure of the packet sent by the adapter is shown in Figure 25. It
contains not only the usual BOP, route and EOP characters to delimit the
packet and to make it reach its destination, but also the physical sender node
identifier, key and destination window. A CRC checksum of the packet is also
added: it will be used by the receiving side to check the incoming packet.

Figure 25. Switch Packet Creation for User Mode

If a service window packet is present on the adapter’s FIFO, the meaning of
the header is slightly different. The process that is sending the packet is the
fault service daemon and it knows exactly the topology of the SP Switch. It
may want to send a packet to a switch chip, and this information is not present
in the adapter’s SRAM. Instead, the route information coming from the
window is the sequence of bytes that must be used in the switch packet.

The adapter adds the BOP, the CRC and the EOP and just copies the route
and the data from the packet it has received (see Figure 26).

Figure 26. Switch Packet Creation for Service

Route 3 Route 4Route 2Route 1 Window Node IDKey

Route IDDest ID

DATA

Route 2

Key WinSRC Node ID

BOP

CRC EOP

DATA

Route

DATA

EOP

DATA

CRC

RouteBOPDest ID
Communication Network Hardware 45

The last possible case is when the packet in the adapter’s FIFO is an IP
packet (see 4.6, “IP Layer” on page 59 for more details).

IP kernel extension does not know the SP Switch topology but only the
physical destination node, so it is the adapter’s microcode that has to specify
the correct routing. This is done by looking into a table that contains the
routes to every node in the system. The table has been supplied to the
adapter by the fault service daemon. In order to better use the switch, the
microcode changes the routes used to reach the same IP destination for each
IP packet.

IP packets may have different sizes, up to 64 KBytes, but the maximum
packet size in the adapter is 1 KByte. IP is not aware of this limitation and
provides the entire IP datagram. The adapter’s microcode has to split the data
into packets recording the offset of each of them inside the datagram so that
the receiving adapter’s microcode can reassemble them.

Switch packets are then created as in the previous cases: BOP, route, the key
field, the window, the data, CRC and EOP (see Figure 27).

Figure 27. Switch Packet Creation for IP

On the receiving side, when a packet is received by the TBIC, the microcode
looks at the header received, detecting the sending node identifier, the key
and the destination window. Then it checks for the CRC. If any checksum
problem arises, the packet is discarded and an Error/Status error message is
sent.

If the destination window is for User Space, the source and key values are
compared with the expected ones in the table in the adapter’s SRAM to check

Routing information

Route IDDest ID

DATA

Route

Key WinSRC Node ID

BOP

CRC EOP

DATA
46 Understanding and Using the SP Switch

if the packet has to be forwarded. If the packet is for IP, it may need to be
assembled with other incoming packets before the IP kernel extension can
use it. In any case, the packet is put on the adapter’s FIFO and then copied to
the correct window in the node’s main memory using DMA.

Whenever a packet is ready for the corresponding window, the window’s
counter of available packets is increased by the adapter. The software on the
RS/6000 polls that counter to see if there are packets available. The adapter
may issue an interrupt to signal the presence of packets if the counter
becomes greater than a given threshold.

The adapter’s microcode is designed to follow, as fast as possible the
incoming traffic from the switch in order to avoid being the bottleneck of the
network. When it does not have incoming packets to handle, it manages all
the packets that are ready on the send queues on the node, servicing the
windows in a round robin fashion.

3.7 Performance Data

Performance on a network is described in terms of bandwidth and latency.
Bandwidth is the amount of data that is transferred in a unit of time. In a
multistage network, it is defined by the section that is able to move data with
the lowest rate. Latency is the time needed to transport data from sender to
receiver. It is contributed to both by the physical propagation time along the
transport media and by the overhead in data management in all the devices
involved in the network.

In the SP system, the raw performance is given in Table 1.

Table 1. SP Switch Raw Performance

All the links in the network are able to transfer 150 MB/sec in each direction,
so the bandwidth is constant. The latency is very low compared to other
networks and is constant within the ranges shown. When more than 80 nodes
are involved, intermediate switch boards are needed to provide the required
path redundancy; this new network stage causes a small increase in latency.

Number of
SP Nodes

Latency
(microsec)

Bandwidth (MB/sec)

Unidirectional Bidirectional

up to 80 1.2 150 300

81 to 512 2.0
Communication Network Hardware 47

The data in Table 1 on page 47 represents the best raw performance the
network can give. The performance that may be measured at the application
layer will be lower and it will depend on the overall SP system configuration,
on the communication protocol used and on the overhead introduced by the
application itself. Several parameters may need to be tuned to achieve the
best results for each system, and this tuning may be different for each
system.
48 Understanding and Using the SP Switch

Chapter 4. Communicating with the SP Switch

Software applications on the RS/6000 SP system make use of the SP Switch
network, profiting from this low latency and high bandwidth communication
channel in different ways.

IP packets can be sent over the SP Switch. The IP kernel extension takes
care of feeding data into the SP Switch, and any application that makes use
of IP can be run on the system and transfer data through the switch network.

The use of IP requires the application to issue system calls, thus switching to
kernel mode in order to send and receive data. Mode switching and IP
communications bring significant overhead that affects overall performance.
Network degradation may be a factor, especially for parallel processing where
a large number of computing nodes are involved and many messages are
exchanged.

Better performance can be achieved when an application directly accesses
the adapter to send and receive data to other nodes in the network, avoiding
mode switching and the overhead of the TCP/IP protocol stack. Applications
can use User Space communications through standard message passing
libraries, obtaining a very efficient use of the switch network.

4.1 Protocol Overview

A communication protocol stack is provided to help applications access the
switch adapter. Several components are present to hide the physical details
of the adapter and to provide the user application a set of standard libraries
that simplify the message passing interface. The protocol stack manages
data and provides reliable communications.

As seen in 3.6.5, “Data Flow” on page 41, the switch adapter takes care of the
physical transmission of data through the SP Switch network and transfers
packets of data to and from the node’s main memory. The packets have a
specific format and are always sent to the correct environment (window) or
process that uses them.

Several interfaces are needed to provide both user applications and kernel
access to the switch adapter for communication and switch management
purposes. The Communication Subsystem (CSS) protocol software and its
interaction with other components is shown in Figure 28 on page 50.
© Copyright IBM Corp. 1999 49

Figure 28. Communication Subsystem Components

User Space applications make use of functions provided by message passing
libraries that provide a reliable exchange of data between computing nodes.
These libraries make use of a protocol stack described in this chapter. Data is
passed directly from and to the adapter and process data structures, with
almost no actions from the kernel.

In PSSP 3.1, up to four User Space applications on a single node may use
message passing libraries to exchange data with the switch adapter. If more
than four applications are required, the communication has to rely on UDP/IP
communications over the switch. Performance is reduced, but no application
change is required. The UDP protocol can also be used to exchange
messages with machines that are not connected to the switch network but are
reachable using other TCP/IP communication links.

A special process that runs on each switch-connected node of the SP system
is the fault service daemon. It accesses the switch using a special service
library in order to monitor and configure the SP Switch. Every command
issued to configure the switch network (an E-command) is directed to this
daemon.

IP communication over the switch is made via a kernel interface layer
between IP and the adapter, that manages the data transfer with the physical
transport medium.

S w i t c h A d a p t e r

Kernel Space

User Space

CSS DDif_lsARP

 Kernel
Extension

I P

TCP UDP

Fault Service
 Daemon

Service Library

MPI / MPL

MPCI

PIPE

Hardware
Abstraction
Layer

Packet

User application

LAPI

E-command

Hardware
Abstraction
Layer

User application
50 Understanding and Using the SP Switch

4.2 Message Passing Interface (MPI) Layer

The Message Passing Interface (MPI) library provides a complete set of
message passing functions, as defined by the MPI Forum, for point-to-point
message passing, collective communication such as broadcast, and
environment specification and control. The library provides: functions which
can be bound to C (C++) and FORTRAN programs; include files with
predefined data types, MPI constants, function prototypes, and so forth.

The library does not take care of allocation of computing resources and
starting of tasks on appropriate computing nodes. The MPI message passing
library expects all tasks to be started at the same time, and does not deal with
situations where the number of tasks varies during a parallel job. A run time
environment, like Parallel Environment for AIX (PE), must be used for this
purpose. We do not describe the run-time environment. Parallel Environment
supports MPI and MPL (IBM’s proprietary and practically obsolete Message
Passing Library).

Two versions of the MPI implementation are provided:

 • Non-threaded library, also called the signal-handling library

 • Threaded library, which is thread-safe and uses POSIX threads

The principal function of the message passing subsystem is the reliable
exchange of data between computing nodes; the actions performed are send,
receive, wait and test. A message is said to be complete when the user
application buffer is no longer being used by the message passing
subsystem; thus a send is complete when the user may reuse the application
data area. A receive is complete when the user may reliably read the contents
of the application data area.

Sends and receives may be blocking or non-blocking. A blocking operation
does not return from the function call until the requested function is complete.
A non-blocking operation returns promptly to the caller, who is restricted from
accessing the application data area until the operation is completed via a wait
(blocking) or successful test (non-blocking) call.

A non-blocking send or receive is represented by a request handle. The
request is created by the send or receive call and the handle is returned to
the caller. The request is later completed by a wait or test call using the
request handle. The wait or successful test nullifies the handle.

The MPI API defines a number of data types, topology and environment
functions. These are implemented within the MPI layer of the stack, along
Communicating with the SP Switch 51

with calls to capture trace data if requested, MPI profiling entries, and specific
language bindings. The MPI layer also maintains information about MPI
communicator structures and contains the appropriate algorithms for
implementing collective communications, which are based on estimates of
latency and bandwidth obtained when the library is initialized.

All MPI functions involving actual communication with other tasks are mapped
into point-to-point operations implemented via the MPCI library.

4.3 Message Passing Client Interface (MPCI) Layer

Message Passing Client Interface (MPCI) is the primary interface to the
point-to-point message passing protocols that use the SP Switch. MPCI
supports communication via UDP/IP and direct User Space access to the
family of switch adapters.

The UDP/IP implementation of MPCI provides a general purpose solution that
handles multiple tasks (processes) per node and communication over any
network, while the User Space implementation of MPCI supports up to four
tasks per node. The User Space provides the best performance by allowing
direct access to the adapter, avoiding the cost of switching to kernel mode to
send and receive messages.

The MPCI layer provides functions to MPI and MPL, giving them access to
the lower PIPE layer. It also serializes message passing over its window,
since only one thread at a time may access a window.

MPCI deals with messages sent and received by the user application, relying
on the PIPE layer for a reliable, byte-stream physical transport medium
between tasks. Each user task has two PIPE FIFOs for each other task it
speaks to, as shown in Figure 29 on page 53, one for sending and one for
receiving messages. Whenever one task inserts a set of bytes on its send
FIFO, it expects that the destination task receives the same bytes in the same
order.

The PIPE layer hides the physical position of tasks. Once the library
environment is set up and all the PIPE FIFOs created, the MPCI layer is not
aware of whether it is using UDP or direct access to the switch adapter to
send the messages, or if the tasks are on the same node or on a different
machine. MPCI just continuously uses the transport layer given by PIPE
structures.
52 Understanding and Using the SP Switch

Figure 29. PIPE FIFOs among Tasks

When the user application sends a message, it specifies the buffer where the
message lies, the destination task and several sending options. MPCI selects
the appropriate PIPE structure and inserts data into it.

If the user message is smaller than MP_EAGER_LIMIT (4 KB by default), a
message header and the actual message data are inserted into the PIPE
FIFO. If the user message is bigger than MP_EAGER_LIMIT, only a header is
created and inserted into the PIPE FIFO. The message is not transmitted until
the receiving task is ready to use it. When the receiver requests the message,
it is sent.

If the message is contiguous and 32 KB or larger, the user buffer is directly
read by the PIPE layer when sending it into the switch network, avoiding the
penalty of a memory-to-memory copy into the PIPE FIFO.

On the receiving end, the MPCI layer continuously looks into all the PIPE
FIFOs for the task. It searches the header sent by the corresponding MPCI
layer to detect the beginning and the length of a message. It then waits for the
PIPE layer to fill the receiving buffer with all the data sent. When the message
is in the FIFO, MPCI extracts it. If the task has requested the message, the
data is directly copied in the user’s buffer; otherwise, it is copied in an Early
Arrival Table while waiting for the task to request it.

If the header is received for a message whose size is greater than the
MP_EAGER_LIMIT, MPCI first checks if the task has already requested it. If
the message has been requested, MPCI sends back a message asking for

from task 1

to task 1

from task 3

to task 3

from task 2

to task 2

from task 4

to task 4 from task 3

to task 3

from task 2

to task 2

Task 2

Task 3 Task 4

Task 1

P
IP

E
 la

ye
r

co
m

m
un

ic
at

io
n

Communicating with the SP Switch 53

data transfer, otherwise it stores the header, waiting for the task to make the
get call. This procedure avoids filling MPCI’s Early Arrival Table with many big
messages.

Once the message is extracted from a PIPE, the space is freed and the PIPE
can accept other bytes from the sending task.

4.4 PIPE Layer

The PIPE layer provides a transport layer that is:

 • Byte-stream oriented

 • Reliable

Each PIPE structure may be seen as a FIFO where data is inserted by one
task and removed by the other task with no data loss during transmission. It is
the PIPE layer that takes care of using the correct transport layer (UDP or
direct access to switch adapter) and of performing recovery actions in case of
data loss during data transfer.

The PIPE layer takes the bytes from a send FIFO, assembles them into one
or more packets that fit the physical transport layer and sends them to the
destination task. When MPCI asks to transmit data with a size greater than
the MP_EAGER_LIMIT, the PIPE layer creates the packets directly from the
user buffer.

All packets have a sequence number and a base address that are used to
reconstruct the byte stream when packets are received out of order.

The receiving PIPE acknowledges the delivery of the packets and implements
packet level token flow control. If a packet has been dropped or otherwise
unsuccessfully received, the PIPE layer also retransmits that packet.

Each task has one receive and one send PIPE for each task it exchanges
messages with. The corresponding sending and receiving PIPEs on the two
tasks synchronize themselves in order to provide a continuous data flow to
the MPCI layer.

The data packets created by the PIPE layer are transmitted to the receiving
PIPE either using UDP or through direct access to the switch adapter. If
UDP/IP is used as the transport layer, a switch to kernel mode is required to
execute the IP code both on the sending and on the receiving side to make
packets flow from sender to receiver.
54 Understanding and Using the SP Switch

All interactions between the PIPE layer and the switch adapter are carried out
through the Hardware Abstraction Layer (HAL) library. The library provides
access to the adapter’s resources hiding their physical details, thus making
improvements on the adapter hardware and its interface to the system easier
to introduce.

Direct access to the switch adapter is the most efficient way to communicate
with the SP Switch. Each task has one output and one input DMA buffer that
is shared among all PIPEs. Packets are copied from each send PIPE of the
task to the output DMA buffer, where the adapter gets them using DMA. The
adapter sends the packets into the switch network as described in 3.6.5,
“Data Flow” on page 41. On the receiving side, the adapter moves the
packets using DMA into the destination task’s input DMA buffer, from where it
is copied into the correct receive PIPE. In Figure 30 you can see a
representation of data flow.

Figure 30. PIPE-to-Adapter Data Flow

Messages already requested by the receiving task and larger than
MP_EAGER_LIMIT are put by the PIPE layer directly into the task´s buffer,
avoiding the intermediate copy to the PIPE FIFO.

Packets from all send PIPEs are evenly copied into the output DMA buffer. If
there is no more space in the output DMA buffer, the PIPE layer stops
transmitting until space is freed.

The packet structure, when direct access to the switch adapter is used, is
described in Figure 31 on page 56. The first part of the packet contains the
destination task logical identifier and a route indicator that tells which of the

SP switch

input DMA buffer

Task 2

to task 2

Task 1

to task 3

from task 3
PIPE layer

output DMA buffer

packets

Switch adapterSwitch adapter

from task 1

packets
Communicating with the SP Switch 55

four possible routes to the destination should be used. The PIPE layer does
not know which are the physical routes, but it is aware that four of them are
always available: for each packet it sends to the adapter, a different route
number (0, 1, 2, or 3) is selected to distribute the load in the SP Switch
network. The adapter manages to send the packet to the correct node using
the destination field and the route number.

Figure 31. Packet Created by PIPE Layer

The second part of the header is used for synchronization between PIPE
layers on different tasks. The adapter sends packets to the DMA buffer of the
destination task and the source field is used by the PIPE layer to identify the
receive FIFO to which the data belongs. Then the sequence number and
base address are used to define in which position of the FIFO the packet’s
content has to be put, creating the FIFO abstraction for the MPCI layer.

The token field is used for flow control. It contains the number of packets the
sender task can receive from the destination task. In this way each PIPE
buffer is aware of how many packets can be sent, thereby avoiding receiving
buffer overflows.

When packets are removed by MPCI from the input buffer, the PIPE creates
an acknowledge packet for the received sequence number that is sent back to
the sender. When the sender receives the acknowledge, it frees the space
held for the sent packets and accepts more data from MPCI.

If sent packets are not acknowledged within a given period of time (less than
one second), all outstanding packets are retransmitted and will be placed in
the correct place in the byte stream of the receiver.

0 Seq. No AckSource

Route NumberDestination

1 Source Seq. No Tokens Base Addr

D A T A

Route NumberDestination

Acknowledge packetData packet
56 Understanding and Using the SP Switch

4.5 Low-Level Application Programming (LAPI) Layer

User Space communication helps to achieve improved performance by
avoiding the system calls, context switch and extra copy overhead associated
with communication interfaces that have a path through the kernel. However
there is overhead associated with the User Space message passing
implementation that impacts performance. For instance, in order to satisfy the
semantics required of the MPI and MPL specifications, the implementation
often needs to keep multiple copies of the data.

Another communication interface, the Low-Level Application Programming
Interface (LAPI), which is part of the SP software, addresses some of the
performance concerns of MPI and MPL, and adds new features.

LAPI is an asynchronous communication mechanism intended to provide
users the flexibility to write parallel programs with dynamic and unpredictable
communication patterns. It is deemed to be an efficient interface, with low
latency and high bandwidth, and includes data communication as well as
synchronization and ordering primitives.

The design object of LAPI includes:

 • Performance: eliminate some of the protocol overhead required for
implementing MPI and MPL

 • Flexibility: provide an alternate programming model for the SP

 • Extensibility: provide users of LAPI the ability to extend its functions

LAPI is also intended for exploitation by subsystem developers who want to
extract performance from the SP system. The design of LAPI is based on the
Remote Memory Copy (RMC) model. RMC is a one-sided programming
paradigm quite similar to the load/store model of shared memory
programming. The model is one-sided in the sense that the target process
does not have to take explicit action for the active message to complete (for
example, no explicit read). The RMC interface eases some of the difficulties
of the send/receive model used in message passing parallel programs. As
part of LAPI, an active message style interface is provided to enable the user
to easily add functions using the LAPI infrastructure.

An active message includes the address of a user-specified handler. When
the active message arrives at the target task, the specified handler is invoked
and executed in the address space of the target. We use the term origin to
denote the task that initiates an LAPI operation, and the term target to denote
the task whose address space is accessed by the LAPI operation.
Communicating with the SP Switch 57

Optionally, the active message may also include some data from the
originating process. Buffering, beyond what is required for network transport,
is not required because storage for arriving data (if any) is specified in the
active message, or is provided by the invoked handler.

When the active message brings data from the originating process, LAPI
requires the handler to be written as two separate routines:

 • A header_handler function, which is the function that is specified in the
active message call. It is called when the message first arrives at the
target process (actually the first packet of the message arrives), and it
provides the LAPI dispatcher (the LAPI layer that deals with the arrival of
messages and the invocation of handlers) with:

 • An address where the arrival data of the message must be copied

 • The address of the optional completion handler

 • A completion handler which is called after the whole message has been
received, meaning that all the packets of the messages have reached the
target process.

The separation of the handler into a header handler and completion handler
in the active message infrastructure allows multiple independent streams of
messages to be sent and received simultaneously within an LAPI context.

LAPI supports messages that can be larger than the size supported by the
underlying network layer. This implies that data sent using an active message
call will arrive in multiple network packets, possibly out of order. This places
some requirement on how the handler is written.

When the first packet is received, the LAPI dispatcher receives it, identifies it
as a new message, and reads the header handler to be called. The handler
returns a buffer pointer where incoming data is to be copied and the address
of the completion handler. The LAPI library then moves all the received
packets to the specified buffer and when the whole message is received, the
completion handler is executed.

Other characteristics of the LAPI interface are:

 • Basic data transfer operations are memory-to-memory copy operations
that transfer data from one virtual address space to another virtual
address space.

 • The operations are semantically unilateral. One process initiates it, and
the completion of the operation does not require any other process to take
some complementary action. This is unlike a send/receive where a send
58 Understanding and Using the SP Switch

requires a complementary receive with matching parameters to be posted
for completion, and vice versa.

 • The initiating process specifies the virtual address of both the source and
destination of the data, unlike send/receive where each side specifies the
address in its own address space. This means that the process must know
the virtual address of all the objects it will access in address spaces of the
processes it will communicate with.

 • Since data transfer is unilateral, and no synchronization between the two
processes is implied, additional primitives are required for explicit process
synchronization when that is necessary for program correctness.

The data operations that LAPI supports are Put and Get. They are unilateral
operations. They transfer data between the initiating task and another task
specified by the initiator. Put transfers data from the local virtual memory of
the initiating task to the virtual memory of the other task. Get transfers the
data in the opposite direction. Concurrent use of a buffer which will be
modified by multiple asynchronous operations has to be controlled by the
user.

The Put function in LAPI enables the push mode of communication: write
data into the address space of another task in the parallel job. The Get
function enables the pull operation: read from the address space of another
task in the parallel job.

4.6 IP Layer

The SP system was created to provide a powerful parallel processing
environment and initially did not use IP to provide communication over the
switch. IP was then introduced to make applications that rely on the TCP/IP
protocol work on the SP system and to provide a communication layer for
tasks that exchange messages with machines not in the SP system.

The IP protocol is handled by AIX kernel extensions and it manages the
interaction with all the interfaces present on the node, including the switch
interface, as can be seen in Figure 32 on page 60.

Each IP datagram that a node wants to send to a network is passed to the
corresponding interface layer. There are different layers, depending on the
network type, each of which knows exactly how to manage the I/O with the
physical medium. For example, if_ls (originally called the light speed
interface) is responsible for the SP Switch network.
Communicating with the SP Switch 59

What is special for the switch is that it is not the device driver that manages
the data transfer with the adapter, but it is the adapter itself that directly reads
and writes to node memory.

Figure 32. IP Kernel Extension

4.6.1 Address Resolution Protocol (ARP)
The destination of an IP datagram is defined by the IP address, but the switch
network uses switch node numbers to identify destinations. The if_ls interface
layer then has to translate from the IP address to a switch node number in
order for data to get passed through the switch network.

The most common method used in the TCP/IP protocol stack to map IP
addresses into network identifiers is ARP. The ARP protocol maintains an
ARP table with the mappings. If an entry does not exist for a given IP
address, then the protocol issues an ARP request: a broadcast on the
network asking the node with the requested IP address to reply giving its
network identifier. The node with the requested IP address responds back.
ARP table entries are deleted periodically (the default is 20 minutes).

The SP system uses the ARP protocol. The SP Switch does not support
broadcast but only point-to-point communications. In order to support ARP,
the interface layer has to translate an ARP request into several messages,
one for each node in the switch network.

In order to reduce network bandwidth usage due to ARP packets, when if_ls
is configured in a node, it “broadcasts” a gratuitous ARP response packet. In
this manner, the ARP tables for all nodes get the mapping for the incoming
node.

TCP UDP

if_ls . . .

Switch adapter

if_trARP

IP

if_en

. . .VSD
60 Understanding and Using the SP Switch

If ARP is not used, a special IP numbering scheme must be used (section
5.4, “Planning the Switch IP Network” on page 81 for more details). If there
are no special application requirements (for example, the HACMP
environment requires ARP) and a more flexible IP address assignment is not
needed, ARP can be turned off for all the switch adapters in the network. In
this configuration, it is the fault service daemon of each node that provides a
mapping function to each interface layer, translating the IP address into the
destination node number. Note: This function can be used only by the
interface layer.

4.6.2 Send Data Flow
An IP datagram is copied to the kernel using several data structures, the
number depending on the size of the data. The smallest element is the mbuf
structure that can contain up to 228 bytes of data. If the datagram is larger,
the mbuf structure can contain a pointer to an mcluster structure, or the
datagram can be put in a linked list of mbufs, each containing an mcluster
(see Figure 33 for an example).

Figure 33. IP Kernel Data Structures

The interface layer works directly with the switch adapter. It can write some
variables to the adapter’s SRAM, and some kernel memory segments are
read and written by the adapter. Using these shared areas, the kernel and the
adapter can synchronize themselves and exchange data.

A send FIFO (sFIFO) structure is part of the interface layer. It has 512 entries
of 256 bytes each. If an outgoing IP datagram consists of only one mbuf, it is
copied to the sFIFO and the mbuf is freed. Each entry of the sFIFO contains a
header that tells to which physical node the data has to be sent.

mcluster

DATA

DATADATA DATA

mbuf

mbuf
header

mbuf
header

mbuf
header

mbuf
header

mbuf
header
Communicating with the SP Switch 61

The switch adapter microcode copies the data from the sFIFO using DMA
when it is ready to send IP datagrams. The data in the sFIFO is then put in a
single switch packet and sent to the destination.

When sending a larger datagram, too much overhead would occur if it had to
be split into smaller pieces and copied into the sFIFO. To improve
performance, a Send Pool buffer is used in pinned memory that is shared with
the adapter. The Send Pool’s size can be from 512 KB to 16 MB.

For IP communications over the switch, the kernel allocates mclusters from
the Send Pool instead of the standard pool. The cluster size can be 4, 8, 16,
32 or 64 KB (the switch MTU is 64 KB). The interface layer then receives an
mbuf structure where all the mclusters are already in a memory zone that can
be read by the adapter, so it creates a new entry in the sFIFO containing
pointer(s) to the Send Pool.

The adapter reads the sFIFO, detects that there is more data on the Send
Pool and starts reading it using DMA. In this case the IP datagram is larger
than the switch packet: the adapter’s microcode splits the datagram while it is
being read from the Send Pool, creating switch packets whose headers
contain an offset within the mcluster. When all the data is inserted into the
switch, the space in the pool is freed.

The two cases are described in Figure 34.

Figure 34. IP Send FIFO

mbuf
header

DATA

Send Pool

copy data

DATA

DATA

sFIFO

IP datagram

IP datagram

if header

if header

mclusters

mbuf
header

mbuf
header

mbuf
header

create one entry
62 Understanding and Using the SP Switch

If no space is available in the Send Pool, the kernel allocates an mcluster
from the standard pool, where the maximum size of an mcluster is 16 KB.
When the datagram has to be sent, the data has to be copied into an area
that can be read by the adapter. If possible, the Send Pool is used, otherwise
a Reserved Send Pool is used. Memory-to-memory copy cannot be avoided
in this case.

4.6.3 Receive Data Flow
The receive data flow is similar to the send data flow. In the kernel there is a
receive FIFO (rFIFO) and several internal data structures, available also to
the adapter’s microcode, that make possible the transfer of data from the
switch network to the node.

When a packet containing a complete IP datagram arrives at the adapter, it is
added using DMA into the rFIFO. The interface layer reads from the rFIFO,
copies the data into an mbuf, and then gives the mbuf to the IP layer for the
usual TCP/IP handling.

When the IP datagrams sent are larger than 228 bytes, a Receive Pool
pinned memory segment shared with the adapter is used. The microcode on
the adapter reads the packet, looks into the header for the datagram’s size,
allocates a buffer on the Receive Buffer, and finally transfers the data into the
correct position of the buffer using DMA. When the last packet is received, the
microcode adds an entry in the rFIFO that points to the data in the Receive
Buffer. The space in the Receive Pool is released after the receiving
application reads the data into its memory space.

The if_ls interface is notified of the presence of new data in the rFIFO using
interrupts. The number of IP packets received that trigger an interrupt varies
depending on the load, in order to reduce the total number of interrupts and
increase the performance.

If a packet that is part of a large IP datagram is lost in the switch network, the
buffer will never be filled completely. A timer is set up upon the receipt of the
first packet and if it expires before the entire datagram is received, the partial
datagram is dropped and the space in the Receive Buffer is freed. If_ls, as
any other IP interface layer, takes no recovery action.

The use of a Receive Pool improves the overall performance of the system
since the data coming from the adapter is not copied into any other
intermediate buffer before being dispatched to the user application. The only
drawback is that applications may not be fast enough to release the buffer
quickly and the pool may fill up.
Communicating with the SP Switch 63

In order to avoid Receive Pool saturation, a high-water mark is present. When
the pool fills up to the water mark, all new buffers allocated by the microcode
are copied into a kernel mcluster as soon as they are filled, and then the
buffer in the pool is freed. There is a performance degradation due to the
memory-to-memory copy, but this prevents the pool from being filled up.

4.7 Fault Service Daemon

The fault service daemon is a special User Space process that monitors and
configures the SP Switch. The same code runs on each SP node, but not all
of its functions are active on all nodes. Each daemon has one of the following
personalities:

 • Primary

 • Primary backup

 • Secondary

The node on which the daemon is running is also referred to differently
depending on the personality of the daemon: primary node, primary backup
node, secondary node.

The primary daemon is the one that is in charge of configuring and monitoring
the SP Switch’s behavior. Exactly one primary daemon is present in every SP
Switch partition. Its fundamental functions are:

 • Initialization of SP Switch

 • Recovery actions for SP Switch faults

 • Generation and update of route tables

The primary backup daemon is a secondary daemon, but it also has the goal
of checking that the primary daemon is up and running. If it detects that the
primary daemon is no longer functional, it changes its personality to primary
and chooses the new primary backup from among the available secondary
daemons.

The secondary daemons only take care of the route table generation and
update, in response to the data passed by the primary daemon.

All the fault daemons are responsible for local switch adapter configuration,
initialization and monitoring. They download routing information to the
adapter’s SRAM, start the microcode and handle adapter faults.
64 Understanding and Using the SP Switch

In the following paragraphs we introduce the basic concepts of the fault
service daemon’s functions that are described in more detail in 7.3.3, “Phase
One of Switch Initialization” on page 124 and in the following sections.

4.7.1 Initialization of SP Switch
In order to operate, the SP Switch requires that all its hardware components
are checked for anomalies and configured with proper values. The primary
fault service daemon is able to exchange information with each single switch
chip in the switch network and uses all data collected to recover any faults
that may occur.

A topology file is provided by the system administrator to the daemon
describing the overall switch network. Based on this overall description of the
network, the primary daemon activates its Worm code, which scans the entire
network looking for any anomalies. Service packets are sent to each switch
chip and node, and every link specified in the topology file is traversed. At the
end of this process, faulty components (such as links, switch chips and switch
adapters) are identified.

All the switch chips receive initialization packets that instruct them on how to
manage events and what kind of operation they are enabled to perform.
Individual receiving and sending ports are enabled or disabled according to
the network configuration and fault isolation. Each chip receives two different
paths along the switch network to be used by the error/status notifications
generated by the chip.

After the network scan is completed, all the fault service daemons compute
the routes from their node to all the other nodes, using the information
collected by the primary daemon.

4.7.2 Network Recovery Actions
All notifications received by the primary daemon from the switch chips are
used to handle network faults. Normally the switch chips try to automatically
recover from errors, but if they are not successful, the daemon is notified so it
can isolate the fault.

Depending on the events received, the daemon may decide to isolate a
network link or a switch chip. It sends service packets to the appropriate
switch chips in order to disable sending and receiving ports. All secondary
daemons are notified of such configuration changes so they may update their
view of the network topology.
Communicating with the SP Switch 65

The primary daemon does not completely rely on asynchronous reports from
switch chips. It performs a periodical scan of the network every two minutes,
requesting the status of all switch chips and the primary backup node. If any
component is found with a bad status, recovery actions are started that may
end in detecting a faulty component.

During the periodic scan, the primary daemon may detect that a node
previously removed from the network because it was not responding has
started working properly; for example, a node may have been turned off and
then back on. The node is then automatically inserted (automatic Eunfence)
into the network.

4.7.3 Generation and Update of Routing Tables
The fault service daemon is responsible for configuring the local switch
adapter routing tables. It has to compute four paths to each other node in the
switch network and to download all this routing information to the adapter.

Each daemon uses the same network topology file to create the routing
information. The primary daemon is in charge of updating the topology view
of all the secondary daemons. When an update is received, all daemons
compute a new set of paths to all nodes and update the adapter’s internal
tables.

Routing table updates are done at the initialization of the switch and also
each time the primary daemon enables or disables a network component
after a switch fault or a specific request of the system administrator.

4.7.4 Administrator Commands
A system administrator can issue a set of commands (the so-called
E-commands) to alter the network topology and to perform maintenance
operations on the SP Switch.

Many of commands are directed to the primary daemon that physically
performs the required action. It sends appropriate service packets to the
involved switch chips and notifies all other daemons of any topology changes,
so they can update their routing tables.

4.7.5 Fault Daemon Recovery
The primary fault daemon is a vital part in the SP Switch software. If it does
not work properly, no switch fault will be handled and the system
administrator cannot modify the switch configuration.
66 Understanding and Using the SP Switch

To avoid all these problems, a backup daemon (the primary backup daemon)
is always present which behaves exactly like all other secondary daemons,
but also checks the health of primary daemon.

The primary backup listens to all the network scans that the primary
performs. For each scan it starts a 2.5 minute timer. If no activity from the
primary is received before the timer expires, another 2.5 minute timer is
activated. If it expires without the scan detection, the primary daemon is
considered faulty.

Upon detection of a primary problem, the primary backup assumes the
personality of a primary daemon. The node that was running the former
primary daemon assumes the personality of a secondary daemon to prevent
the danger of the presence of two primary daemons. All the switch chips and
adapters are then reconfigured to report all their events to the new daemon,
providing the routing information to the primary node. Finally, the daemon
selects a new primary backup.

4.8 Kernel Extension

The functions of the CSS kernel extension code include:

 • Acting as the switch code’s second level interrupt handler, waking up the
fault service daemon to perform fault handling and daemon commands,
such as Estart and Eunfence

 • Setting up shared memory DMA to allow both kernel and User Space
clients to interact with the switch adapter

 • Providing run-time support for the User Space requirements that have to
be done in kernel space

 • Handshaking between the fault service daemon and User Space jobs

4.8.1 Initialization
The CSS kernel extension is loaded during system boot time by the switch
adapter configuration method. Its initialization is done in two phases. In the
first initialization phase, at system boot time, AIX recognizes the kernel
extension. In the second initialization phase, the fault service daemon
executes DMA setup code that has to be run by a process.

4.8.2 Client Windows
The switch adapter support code recognizes three types of clients: User
Space jobs, the IP driver, and the switch code’s Service Library. Each client is
Communicating with the SP Switch 67

granted access to certain parts of the adapter address space (a window) in
order to share some status variables (not data), such as the number of
packets ready to be sent to the adapter or the number of packets present on
the receive queue of the client.

Clients have a local data structure that has to be synchronized with the data
present on the adapter. Data structures are mostly updated by clients. These
updates are made using kernel services, system calls and, in some cases,
direct reads and writes to the adapter’s address space.

4.8.3 User Space Client Initialization
The User Space client requires access to the adapter calling a library function
that uses the Kernel Extension to initialize the client’s environment. A window
and job identifier are used during initialization and a complete description of
the job must have been provided by a Job Manager.

The Kernel Extension validates the values provided by the client to be sure
that the window is not already in use by a running job, and checks the job
identifier for consistency.

If data from the client is valid, a shared memory segment is allocated for DMA
data transfers to and from the adapter. It contains the send and receive FIFOs
of the client. The memory is pinned and attached to the User Space’s address
space. All necessary steps to configure DMA operations are performed.

4.8.4 Second Level Interrupt Handlers
Interrupts received by the device driver’s first level interrupt handler are
redirected to one of three second level interrupt handlers: one for IP, one for
User Space and one for the fault daemon. They all reside in the Kernel
Extension except for the interrupt handler (IP) that resides in the IP interface
layer.

The adapter generates interrupts when packets arrive or when switch faults
occur. The Kernel Extension is configured to signal the correct process that
data has arrived, or to activate the fault daemon for fault handling.

4.8.5 Switch Fault Handling
When a switch fault occurs, the device driver passes control to the kernel
extension, which in turn wakes up the fault service daemon. The daemon
receives the switch error packet, and passes the packet to the switch
recovery code. This code parses the packet and takes appropriate action to
recover and/or reconfigure.
68 Understanding and Using the SP Switch

Attempted recovery requires the resetting of switch ports and the clearing of
errors. Reconfiguration occurs if recovery fails, and may cause links and
chips to be disabled. If a node link or chip is disabled, the corresponding node
gets fenced. This incident usually causes the corresponding jobs to
terminate.

4.8.6 Client DMA Buffer Management
A DMA buffer for User Space tasks is set up as AIX shared memory and is
created with read and write permission by the owner only. When a client
requests DMA access, the Kernel Extension makes the client task the owner
of the shared memory. When the task exits, either normally or with an error,
the shared memory is removed.

The Service Library, running as a user client, allocates the DMA buffer from
the fault service daemon process heap.

IP allocates the DMA buffer from the kernel pinned heap.

4.8.7 Interaction with the Adapter
There are two tables that are downloaded to the adapter using kernel
functions.

The Switch Routing Table identifies the physical routes to each node of the
system. This is generated by the fault service daemon code and downloaded
to the switch adapter’s microcode as part of switch fault handling or the
microcode loading process. For each node four different paths are provided
that are used in a round-robin fashion by User Space and IP packets. After
each switch fault, the Kernel Extension is used to update the adapter’s
partition information.

The switch table, also called the Job Switch Resource Table (JSRT) or
partition table, maps logical task destination IDs to switch node numbers and
window IDs. The JSRT is created by the LoadLeveler or the Resource
Manager from Parallel Environment requests of nodes for parallel jobs. When
a parallel job starts, the Kernel Extension is invoked to load the JSRT into the
adapter.

4.9 Device Driver

The device driver interface provides the functions needed to access the
switch adapter resources. It is basically used by the CSS Kernel Extension.
Communicating with the SP Switch 69

Unlike many other communication adapter device drivers, it does not directly
support sending and receiving messages.

The kernel uses the device driver to register the routines that have to be
called whenever the adapter issues an interrupt to signal that a DMA
operation has completed, that is, that new packets are available. Depending
on the window involved, a separate routine is called.

Several ioctls are supported to read and write data from and to the adapter’s
registers and SRAM. They are used to update information needed by the
adapter to manage the incoming and outgoing switch packets, and to interact
with the adapter’s microcode.
70 Understanding and Using the SP Switch

Part 2. SP Switch Operation
© Copyright IBM Corp. 1999 71

72 Understanding and Using the SP Switch

Chapter 5. Planning for the SP Switch

In this chapter, we describe some basic areas you need to consider when
planning for the switch of your SP system. The tips and hints discussed here
are not meant to be a replacement for the two comprehensive planning
guides SP: Planning, Volume 1, Hardware and Physical Environment,
GA22-7280 and SP: Planning, Volume 2, Control Workstation and Software
Environment, GA22-7281. Consultation with these planning guides is strongly
recommended.

5.1 Choosing a Switch

Current SP installations may have one of two types of switch, depending on
their age: newer systems have the SP Switch, while the oldest may still use
the High Performance Switch (HiPS). For both, there are two models:

 • An 8-port model without inter-switch connection

 • A 16-port model with inter-switch connection

The High Performance Switch technology predates the SP Switch series.
Currently, HiPS networks are not available except for maintenance reasons. If
you plan to add any of the nodes introduced since PSSP 2.4, or to install or
migrate your Control Workstation or any node to PSSP 3.1, you must convert
all your switch boards to the SP Switch.

Although levels of PSSP prior to 3.1 support both the SP Switch and HiPS,
the two switch networks are not physically compatible and cannot be mixed
within an SP system, not even in a partitioned SP system.

If you expect your system to eventually have more than eight nodes or to have
more than two partitions, or you plan to connect it with another frame, you
must not choose SP Switch-8. Its internal configuration does not provide the
scalability and flexibility of the full 16-port switch.

5.2 Switch Node Numbering

In this section we overview some of the numbering schemes used in an SP
system. Refer to SP: Planning, Volume 2, Control Workstation and Software
Environment, GA22-7281, for a more complete explanation.
© Copyright IBM Corp. 1999 73

5.2.1 Frame Numbers and Switch Numbers
All frames in the SP system are numbered according to the serial port to
which they are connected. The frame connected to device tty0 is frame
number 1, the one connected to tty1 is frame 2, and so on.

The switch boards are also numbered and they get their number from the
order they appear in the sequence of frames. That is, if all frames are
switched frames (frames with a switch board) the switch number of the switch
board in a frame will be the same as the frame’s number. But if the system
has non-switched frames (which are frames without a switch board) the frame
and switch numbers will not necessarily match, as shown in Figure 2.

Table 2. Frame Numbers and Switch Numbers

The two non-switched frames in the preceding table are expansion frames for
frame 1. That is, the nodes in frame 2 and frame 3 are connected to switch
board number 1. There are two aspects about expansion frames that should
be mentioned:

1. Expansion frames have to follow the switched frame they are
complementing.

2. A switched frame and its expansion frames cannot have any combination
of nodes.

Intermediate switch boards are numbered using a different rule. Switch-only
frames (frames with intermediate switch boards) have to be the last frames in
the system. And the switch boards in them are numbered consecutively,
starting from number 1001, according to their drawer in the frame.

5.2.2 Slot Numbers and Node Numbers
A node frame has 16 slots available to nodes (numbered from 1 to 16) and 1
slot (number 17) for the switch board. A switch-only frame has 8 slots.

The slot number of a thin node is clearly the number of the slot it occupies.
For wide and high nodes, the slot number is the number of the lowest slot the
node occupies.

Serial Port Switched Frame? Frame Number Switch Number

tty0 yes 1 1

tty1 no 2 —

tty2 no 3 —

tty3 yes 4 2
74 Understanding and Using the SP Switch

A node’s node number is defined by the number of the frame where it is
located and by its slot number, as shown in Figure 35, where Frame 1
contains wide nodes, and Frames 2 and 3 contain high nodes.

Figure 35. Node Numbers

When first configuring a multi-frame system, if you expect to eventually
expand your system through expansion frames, you should consider
reserving the serial ports and frame numbers these frames will eventually
occupy. Otherwise, when the expansion frames are installed, all existing
nodes in frames placed after the expansion frames will be renumbered, and
you would need to reconfigure them.

5.2.3 Switch Node Numbers
A node is normally connected to the switch according to its slot number. In
Figure 36 on page 76 we show a complete switch board with both internal and
external connections. On the figure’s right side are the node switch chips,
whose ports connect to the nodes. These switch ports are labeled N1 to N16,
and a node uses the switch port that corresponds to its slot number. For
example, the node in slot 3 uses connection N3, that is, it is connected to the
switch through jack J26.

 7
 5

 3
 1

15

13
11
 9

Switch 1

Frame 1 Frame 2

17

21

25

29

Frame 3

33

37

41

45
Planning for the SP Switch 75

.

Figure 36. Chip Interconnection and Slot Assignment

SP Switch-8 has only 8 ports and the connection rule is different from that of
the standard SP Switch. Nodes are connected to the switch board in the order
they are placed in the frame, independently of their slot number.

A node’s switch node number or switch port number is an identification of its
connection to the switch fabric. A switch node number is defined by the
number of the switch board and the switch port to which the node is
connected. But, in contrast to node numbers, switch node numbers are zero-
relative. For example, assuming all frames are switched:

 • A node connected to slot 1 in frame 1 has switch node number 0.

 • A node connected to slot 10 in frame 1 has switch node number 9.

 • A node connected to slot 1 in frame 2 has switch node number 16.

 • A node connected to slot 6 in frame 3 has switch node number 37.

Note that in the example, the switch node number of the nodes is always the
node number minus one. This will always be the case, unless the system has
expansion frames. Without going into the details of how nodes in expansion
frames are connected to the switch board, we show in Figure 37 on page 77
the switch node numbers of the system previously shown in Figure 35 on
page 75. Compare the node numbers with switch node numbers.

7
6
5
4

0
1
2
3

SW4

7
6
5
4

0
1
2
3

SW5

7
6
5
4

0
1
2
3

SW6

7
6
5
4

0
1
2
3

SW7

SW3

SW2

SW1

SW0

N14 J34
N13 J33
N10 J32
N9 J31

N6 J10
N5 J9
N2 J8
N1 J7

N3 J26
N4 J25
N7 J24
N8 J23

N11 J18
N12 J17
N15 J16
N16 J15

J3
J4
J5
J6

J27
J28
J29
J30

J11
J12
J13
J14

J19
J20
J21
J22

To NodesTo Switches

Bulkhead Jacks Bulkhead Jacks

4
5
6
7

3
2
1
0

3
2
1
0

3
2
1
0

3
2
1
0

4
5
6
7

4
5
6
7

4
5
6
7

76 Understanding and Using the SP Switch

Figure 37. Switch Node Numbers

5.2.4 Inter-Switch Connection Considerations
As shown in Figure 36 on page 76, each NSB has 16 ports for connecting to
other switches. For example, if a system has 3 switch boards, any board can
have 8 ports connected to each of the other two.

In configurations that require up to five switch boards, all the boards can still
be connected directly to each other; there are 4 connections between each
pair of boards. We call this configuration a single-stage environment.

Direct connection of five frames thus provides only four separate paths
between two nodes, with no backup path. This means that any problem on a
link on the switch will cause the packet traffic to flow on one of the other three
already used paths, causing a network performance degradation. In this
situation, it may be better to introduce an Intermediate Switch Board (ISB),
which provides a higher number of possible routes and makes the transition
to a 6-switch board system easier.

With more than five NSBs, ISBs are required to provide at least four paths for
every two nodes. ISBs are installed in a switch frame in which you can include
only switch boards. When ISBs are installed, NSBs are no longer directly
connected. NSBs are connected only through the second level of staging
provided by the ISBs. This results in 4 ISBs being included for a 6-NSB
system, and 8 ISBs for a 12-NSB system.

It is highly recommended to use ISBs in case of more than three switch
boards. This makes more backup data paths available and it is easier to
expand the system. When no ISBs are used, a complete switch board

 6
 4

 2
 0

14
12
10
 8

Switch 1

Frame 1 Frame 2

 1

 5

 9

13

Frame 3

 3

 7

11

15
Planning for the SP Switch 77

recabling is needed in order to add a new switch board, and switch
communication is stopped while the recabling is taking place. When ISBs are
used, introduction of a switch only requires additional connections to the ISBs
from that new switch.

5.3 External Connection Plans

Some SP nodes are not physically inserted in an SP frame. They are called
Extension nodes and are divided into two types:

 • SP Switch router (dependent node)

 • Self-framed node

There are two models of SP Switch router product, GRF-400 and GRF-1600,
while RS/6000 Enterprise Server Model S70 is currently the only self-framed
node.

5.3.1 SP Switch Router
GRF offers high-speed access to and from other systems. If you need many
network resources for an SP system, you should choose GRF as a router.
The use of RS/6000 nodes as routers is limited by the number of available I/O
slots and is usually expensive, providing a low price/performance ratio.

A valid unused node switch port in the SP system is required to attach the SP
Switch router to an SP switch, that is, a switch port that meets the rules for
configuring frames and switches. You do not put your GRF in the frame, but
you need a reserved space on the switch.

Originally, GRF was available as an extension node, so documents

published before PSSP3.1 use the term extension node only for GRF.

Attention
78 Understanding and Using the SP Switch

Figure 38. SP Switch Router Connection to the SP System

To attach an extension node to an SP switch, configuration information must
be specified on the Control Workstation. Communication of switch
configuration information between the Control Workstation and the SP Switch
Router takes place over the SP administrative Ethernet.

A GRF supports multiple connections to a switch or to multiple switches. With
this function, you can plan more flexible configurations, as follows:

 • Communication among partitions via GRF

 • Backup path to GRF (multiple paths to one partition)

 • Communication between switch boards using GRF

SP
Control Workstation

SP Switch router

SP Switch router
Adapter media card

Control
board

SP Switch

Processor
 node

Processor
 node

To/from other networks and hosts

Administrative network

Switch

Processor
 node
Planning for the SP Switch 79

Figure 39. GRF with Multiple Switch Router Adapter

For a more detailed explanation of GRF and its external connections, refer to
the redbook PSSP 2.4 Technical Presentation, SG24-5173, and to SP Switch
Router Adapter Guide, GA22-7310.

5.3.2 Self-Framed Nodes
Currently, only the RS/6000 Enterprise Server Model S70 may be added as a
self-framed node. It is a high-end, RS/6000, PCI-based, 64-bit SMP
workstation that supports concurrent 32- and 64-bit applications.

This self-framed node has the following SP characteristics:

 • It is installed as a standard SP node and runs all PSSP software. It can be
viewed and managed by all standard PSSP system management
commands and subsystems like parallel commands, node groups, Group
Services, Event Management, and so forth.

 • It is connected to the SP Control Workstation via the SP administrative
network.

 • It is connected to the SP Switch through a TB3PCI adapter.

 • It is physically located in an SP frame.

 • It is viewed like a frame in the SP, but it cannot be the first frame.

 • It has no frame or node supervisors, so there is only limited hardware
control and monitoring from the Control Workstation.

S w itch rou te r adap te r

S w itch rou te r adap te r

S w itch rou te r adap te r

S w itch rou te r adap te r

G R F

S P S w itch

S P S w itch

F ram e1

Fram e2

*

*

*

*

1

2

3

1 . C om m un ica tion b e tw een pa rtitions v ia G R F
2 . C om m un ica tion b e tw een fram es v ia G R F
3 . B ackup pa th be tw een G R F and S w itch boa rd

* T hese sho w the sw itch port n um be r be ing used .
T he ac tua l p hys ica l co nn ection s a re to the sw itch boa rd .
80 Understanding and Using the SP Switch

 • 64-bit processing is not exploited by PSSP, but you can run 64-bit
applications that do not require any PSSP services.

5.4 Planning the Switch IP Network

To enable IP communication over the switch, each node needs to have an IP
address and name assigned for its switch interface, the css0 adapter. If hosts
outside the SP switch network need to contact the switch nodes in the SP,
they must have a route to the switch network through one of the SP nodes,
preferably the SP Switch router.

Like an Ethernet or Token-Ring network, the SP Switch supports the use of
ARP to resolve IP addresses to hardware addresses. See Section 4.6.1,
“Address Resolution Protocol (ARP)” on page 60 for a description of ARP in
the SP Switch.

But unlike other networks, you do not need to use ARP over the switch. If you
do not enable ARP, you need to specify the switch network subnet mask and
the IP address of the first node in the switch. The IP addresses for
subsequent nodes are calculated using the switch node numbers of the
nodes. It is the fault service daemon that provides the IP interface layer with a
mapping function that translates IP addresses into switch node numbers, as
depicted in Figure 40. Note that with ARP disabled, you can have a single IP
subnet in your switch.

Figure 40. Switch Network Without ARP

W ithou t A R P

IP Layer

In te rface Layer

P hys ica l Layer

if_ ls

S w itch Adap ter

IP A ddress

Kernel

M ic rocode

Sw itch N ode N um ber

192 .168 .100 .1

0

to node 1

M apping Function
192 .168.100.1 0
192 .168.100.3 2

Fault se rvice
daem on

U ser space
Planning for the SP Switch 81

If you want to assign IP addresses freely to your switch as you do with other
adapters, you must enable ARP for the css0 adapter. Then you may use
whatever IP addresses you wish, and those IP addresses do not have to be in
the same subnet. When ARP is enabled for switch communication, you
should be aware that to resolve IP addresses into switch node numbers an
ARP broadcast has to be issued, which means that the same message has to
be sent to all nodes. Of course, ARP maintains a cache to reduce the number
of broadcasts needed. The use of ARP is depicted in Figure 41.

Figure 41. Switch with ARP

See 6.2, “Configuring the SP Switch Adapters” on page 92 for more
information about how to configure the IP addresses of the switch adapters.

5.5 Planning a Partitioned SP System

You can use system partitioning to divide your system nodes into multiple
groups in order to make your system more efficient and more tailored to your
needs. It is internally done by subdividing the SDR and SP service
subsystems and by disabling communication paths over the switch between
nodes of different node groups.

There are some advantages and disadvantages to this approach. For
example, you can partition the system to have different versions of PSSP
completely separated, making sure that no switch communication is possible
between them. On the other hand, VSD and GPFS cannot work across

W ith ARP

IP Layer

Interface Layer

Physica l Layer

if_ ls

Switch Adapter

IP Address

Kernel

M icrocode

Switch Node N um ber

192.168.100.1

0

To Node 1

ARP C ache
IP M AC
192.168.100.1 0 :0:0:0:0:0
192.168.110.3 0 :2:0:0:0:0

Broadcast
82 Understanding and Using the SP Switch

partitions, since the subsystems they would need on different partitions
cannot communicate with each other.

Partitioning is an optional feature. If you do not make use of it, a single default
system partition containing all the nodes is created when the system is
installed the first time, named with the hostname of the Control Workstation.

5.5.1 Partitioning Rules
A new system partition is formed by taking nodes from an existing system
partition and collecting them as a new group. Links among partitions are
disabled and the groups cannot exchange data through the SP Switch. You
can choose from many partitioning templates provided by IBM, or you can
define your own.

There are some rules that must be followed to create good partitions that
guarantee a minimal availability. The concept is that at least two disjoint paths
are required between two nodes in the same partition, instead of the four
paths that are always present in a unpartitioned system.

When no intermediate switch boards are involved, two rules apply:

1. Each switch chip belongs to only one system partition.

2. Any node switch chip that is part of a multi chip system partition must be
connected to at least two link switch chips on the same node switch board
in the same system partition.

In a switch board (recall Figure 36), a node switch chip is a switch chip that
can be connected to nodes, while a link switch chip is a switch chip whose
ports can be connected only to other link switch chips of other switch boards.
In node switch boards, there are four node switch chips and four link switch
chips, while in intermediate switch boards, all switch chips are link switch
chips.

Some configuration procedures can only be done on the default
system partition. If you are using multiple partitions on your SP
system, you have to reconfigure your system to the default single
system partition. As an example, when you add a switch board, you
need to have an unpartitioned system.

Attention
Planning for the SP Switch 83

The switch chips are the building blocks of partitions. If a node switch chip
belongs to a partition, then so do all nodes attached to it, see Figure 42 on
page 84. The smallest possible partition is one node switch chip, together
with any of its attached nodes — a maximum of 4. Any number of partitions
that make use of only one switch chip are allowed.

Figure 42. Partition Boundary and Chip Port Assignment

When more than four nodes must be in the same partition, then more node
switch chips are involved. To make those switch chips exchange data, link
switch chips are required. In order to have at least two disjoint paths, at least
two link switch chips are then used.

As a consequence of the second rule, only two partitions that make use of
two or more node switch chips can be defined in the same node switch board:
each such partition reserves for itself two link switch chips, leaving no more
link switch chips for other partitions.

As an example, Figure 43 on page 85 shows all the possible choices for a
single switch board system divided into two partitions of eight nodes each
(the 8_8 pattern). Three choices (layouts) are possible, depending on which
switch chips are selected to group the eight nodes.

7
6
5
4

0
1
2
3

SW4
(U1)

7
6
5
4

0
1
2
3

SW5
(U2)

7
6
5
4

0
1
2
3

SW6
(U3)

7
6
5
4

0
1
2
3

SW7
(U4)

N14 J34
N13 J33
N10 J32
N9 J31

N6 J10
N5 J9
N2 J8
N1 J7

N3 J26
N4 J25
N7 J24
N8 J23

Node Switch Board

N11 J18
N12 J17
N15 J16
N16 J15

Partition Boundary and Chip Port Assignment
To Nodes

Minimum Boundary
 for Partitioning
84 Understanding and Using the SP Switch

Figure 43. Partition Layout and Chip Assignment

An example of a multi chip partition for a two-switch board system is shown in
Figure 44. In order to have Node A and Node B in the same system partition,
all the highlighted switch chips must be included to provide at least two
disjoint paths.

Figure 44. Partitioning in a Two Switch-Board System

As you can see, several switch chips are already reserved for the partition,
limiting the topology of any additional partitions. Creating many partitions
when using several switch boards may be tricky, and you should use a
scheme like the one in this example to ease your work.

Layout 1
Partition 1: 1 ,2 ,5 ,6,9,10,13,14
Partition 2: 3 ,4 ,7 ,8,11,12,15,16

Layout 2
Partition 1: 1,2,5,6,11,12,15,16
Partition 2: 3,4,7,8,9,10,13,14

Layout 3
Partition 1 : 1,2,3,4,5,6,7,8
Partition 2 : 9,10,11,12,13,14,15,16

SW 7

SW 4

SW 5
SW 6

SW 7

SW 4

SW 5
SW 6

SW 7

SW 4

SW 5
SW 6

Node BNode A
Planning for the SP Switch 85

When intermediate switch boards are involved in a system partition,
complexity increases since the switch chips on the ISBs are also used.

5.5.2 Partitioning Aid
IBM does not provide all partitioning combinations because of their huge
number, which grows exponentially with the number of nodes. Inside the
PSSP software only the simplest and most common partition configurations
are provided, covering most customer needs.

If you do not find a suitable pattern in the supplied templates, you can create
your custom partitioning scheme very easily with the Partitioning Aid GUI
tool, which also makes the needed consistency checks on the defined
partitioning scheme, applying partitioning rules.

For detailed information on Partitioning Aid, refer to SP: Planning, Volume 2,
Control Workstation and Software Environment, GA22-7281.

5.6 VSD and GPFS

Virtual Shared Disk (VSD) and General Parallel File System (GPFS) are
shared disk applications that exploit the SP Switch network. They make use
of IP but require the high bandwidth and reliability of the switch to work
properly. They enable you to share common data among multiple nodes with
very high performance by using the underlying switch fabric.

5.6.1 Virtual Shared Disk (VSD)
VSD is an application on the switch network that makes disk sharing among
multiple nodes possible. The characteristics of VSD are:

 • High performance shared disk system on SP (PSSP V2.1 or later).

 • Single point management for multiple nodes usage, using smit.

 • Provides data striping function (Hashed Shared Disk, or HSD).

 • Device support is limited to raw disk access, and an external locking
function is needed for data integrity.

VSD’s architecture is shown in Figure 45 on page 87.
86 Understanding and Using the SP Switch

Figure 45. VSD Architecture

5.6.2 Recoverable VSD (RVSD)
RVSD is an optional feature that runs on VSD to provide high availability
functions and recovery in case of node failure:

 • It provides takeover by a secondary server in case of failure of a server
node.

 • It is used with twin-tail disks or SSA disks.

 • It is able to co-exist with HACMP/ES.

An example of an RVSD configuration is shown in Figure 46 on page 88.

Node X
Application

VSD

LVM IP

Disk DD Net DD

lv_X lv_Y
SP Switch
(IP Network)

Node Y
Application

VSD

LVMIP

Disk DDNet DD
Planning for the SP Switch 87

Figure 46. RVSD Configuration

If Node X is down for maintenance or because of a failure, the backup server
Node Y takes over and provides access to data on the disk previously
managed by the failed node (see Figure 47).

Figure 47. RVSD Takeover

For more detailed information for VSD and RVSD, see PSSP: Managing
Shared Disks, SA22-7349.

Node X

VSD

RVSD_X
 (lv_X)

Node Y

VSD

RVSD_Y
 (lv_Y)

Node Z

VSD

VSD Server VSD Server VSD Client

RVSD_X
RVSD_Y

SP Switch(IP Network)

Twin-tail
or SSA Disk

Node X

VSD

RVSD_X
 (lv_X)

Node Y

VSD

RVSD_Y
 (lv_Y)

Node Z

VSD

VSD Server VSD Server VSD Client

RVSD_X
RVSD_Y

SP Switch(IP Network)

Twin-tail
or SSA Disk

Dow n!
88 Understanding and Using the SP Switch

5.6.3 General Parallel Filesystem (GPFS)
GPFS is a relatively new file system application that runs on the SP Switch
network. It relies on VSD functions and behaves almost like a common UNIX
file system, with some limitations. The file system is used by multiple nodes,
requires single-point management and provides high performance. Its main
characteristics are:

 • Requires PSSP V2.3 or later

 • High performance file system over the Switch network

 • Requires VSD and RVSD (V2.1 or later)

 • Single-point management for multiple node usage using SMIT

 • Provides data striping function

 • Is treated as a file system, and you can use common UNIX commands like
mkdir, cp and so forth. Data locking is provided by GPFS.

Figure 48 shows the structure of GPFS.

Figure 48. GPFS Overview

For planning and installation, refer to the redbooks GPFS: A Parallel File
System, SG24-5165.

APPLICATIONS

JFS GPFS

RVSD
VSD

LVM IP

PSSP

VFS Layer

Switch
for data traffic
Planning for the SP Switch 89

90 Understanding and Using the SP Switch

Chapter 6. Installation of the SP Switch

In this chapter we discuss some of the installation issues for the SP Switch,
as described in PSSP Installation and Migration Guide, GA22-7347. It is not
our objective to discuss all the installation steps of an SP system, and we
assume you are consulting the installation manual to know the context where
the actions described here are to be taken.

In this chapter we also discuss aspects of system partitioning, and describe
some of the installation verification tools available to you. When reading this
chapter, refer to PSSP Command and Technical Reference, SA22-7351, for
the full syntax of the commands mentioned.

6.1 Installing the SP Switch

In the following three sections we go over the essential installation steps for
the SP Switch, which follow:

1. Configure the switch adapters in the SDR.

2. Select the switch topology file, annotate it, and store it in the SDR.

3. Determine the clock topology file.

You may also partition your system, as more fully discussed in 6.5, “Setting
up System Partitions” on page 103.

After your nodes are installed, you are ready to start the switch through the
Estart command (refer to 7.3, “Starting the SP Switch” on page 119). Before
that, you may also want to specify your primary and primary backup nodes
(refer to 8.1, “Selecting the Primary and Primary Backup Nodes” on page
131).

Figure 49 on page 92 depicts the switch installation steps and their
interaction with other system components.
© Copyright IBM Corp. 1999 91

Figure 49. Installation and Configuration: Processes and Resources

6.2 Configuring the SP Switch Adapters

The spadaptrs command is used to configure the “additional” adapters of the
system nodes. By additional, it is meant all adapters other than the ones
connected to the administrative Ethernet network. The SP Switch adapters
are configured with this command, and special attention is needed.

When you configure SP Switch adapters to your system you have to define
the following thee options through smit add_adapt_dialog or the spadaptrs
command:

 • Skip IP Addresses for Unused Slots (-s flag).

 • Enable ARP for the css0 Adapter (-a flag).

 • Use Switch Node Numbers for css0 IP Addresses (-n flag).

Table 3 shows all allowed combinations of those three options.

Table 3. IP Assignment Options

Objective Use Switch Node
Numbers?

Skip IP Addresses for
Unused Slots?

Enable
ARP?

Assign IP addresses
according to switch
node numbers

Yes No Optional

SDR

spadaptrs

file

file name

IP addresses

hardware config

clock config

Switch
Topology

File

Clock
Configuration

File

IP planning

Eannotator
/Etopology

Eclock
92 Understanding and Using the SP Switch

Note the following observations about this table:

 • Remember that if you have expansion frames, the switch node number is
not necessarily the node number minus one.

 • Assignment of IP addresses according to switch node numbers can only
be specified for all nodes. This means that you cannot have different IP
subnetworks on your switch with this option.

 • The preceding item implies that if you want to subnet your switch (in a
partitioned system, for example), you have to enable ARP.

 • You can assign IP addresses according to node numbers or assign them
sequentially to all nodes, a subset of nodes, or a single node. If you assign
them sequentially, it really does not matter whether you select Skip IP
Addresses for Unused Slots or not.

The spadaptrs command stores the additional adapter information in the
Adapter class of the SDR. You can check the settings of the additional
adapters by issuing:

splstdata -a

6.3 Specifying the SP Switch Topology File

When configuring the SP Switch, the first thing you should do is to specify the
files that define the switch topology of your respective system partitions. A
topology file contains all switch components that are part of that partition’s
switch fabric and how they are interconnected. Any component or link not
present in the topology file, even if physically present, will not be included in
the network by the fault service daemon, as described in 7.3.3, “Phase One
of Switch Initialization” on page 124.

6.3.1 File Naming Rule
The standard topology of a switch network is uniquely defined by the SP
hardware configuration.

Assign IP addresses
according to node
numbers

No Yes Yes

Assign IP addresses
sequentially

No No Yes

Objective Use Switch Node
Numbers?

Skip IP Addresses for
Unused Slots?

Enable
ARP?
Installation of the SP Switch 93

The standard configuration files for unpartitioned systems can be found in the
/etc/SP directory of the Control Workstation. These files comply with the
following naming convention:

expected.top.<num_nsb>nsb.<num_isb>isb.<type>

As you can see, the name of the file reflects the SP hardware configuration by
using the following three variables:

 • <num_nsb>: number of node switch boards in the configuration

 • <num_isb>: number of intermediate switch boards in the system

 • <type>: type of topology, usually 0

The only exception to this convention is for the topology file of an SP Switch-8
system. The name of that topology file is:

expected.top.1nsb_8.0isb.1

Actually, the topology files in the /etc/SP directory are symbolic links to the
directory /spdata/sys1/syspar_configs/topologies. In the initial releases of
PSSP, they were located in /etc/SP, while in later releases file placement was
changed and links were introduced to maintain compatibility.

6.3.2 Inside a Topology File
The topology file is the representation of:

 • All frames used by the system partition

 • All nodes in the system partition

 • All switch boards used by the system partition

 • All switch chips in the system partition

 • The board, switch chip, and chip port to which each node is attached

 • The chip-to-chip connections within each board, including chip port data

 • Any interboard connections, including switch chip and switch port data

The same topology file can be used in both SP Switch systems and the older
HiPS systems. The only important difference between these systems, with
respect to the topology files, is in the use of external connections (jacks) of
the node-to-switch and switch-to-switch cables.

The topology files shipped with PSSP specify the jack connections for HiPS
systems. Thus, to make use of the topology files in finding out which physical
external connection is being used or is showing a problem, we need to
change the standard topology files, a process called annotation. Note that, if
94 Understanding and Using the SP Switch

you do not annotate the topology file, everything should work, but you could
have some trouble in finding, for example, which faulty cable to replace.

The topology files are annotated through the Eannotator command. In all
following discussions, unless otherwise indicated, the topology files shown
have been annotated for an SP Switch.

The topology files are plain text files. Each non-comment line in the file
represents a point-to-point link in the SP Switch network. There are two types
of connections: between a switch chip port and a node, and between two
ports of different switch chips. Typical connections are shown in Figure 50.

Figure 50. Topology File Nomenclature

Each end of a link in the topology file is defined by the following three fields:

<device type > <device ID> <port>

The <device type> field represents to which device the link is connected.
Possible values are:

 • s, for switch chip

 • tb3, for switch adapters

The name tb3 is generic and does not indicate the actual adapter’s type; it is
just an indication that this is a system with an SP Switch.

Sw itch-to -sw itch connections

After Eannota tor s 13 2 s 23 2 E01-S17-B H -J4 to E02-S17-B H -J4

B efore Eannota tor s 13 2 s 23 2 L01-S00-B H -J5 to L02-S 00-B H -J5

sw itch
chip

port

external jack
physica l fram e

N ode-to -sw itch connections

After Eannotator s 15 1 tb3 4 0 E 01-S17-B H -J9 to E01-N 5

sw itch
chip

port

adapter type
sw itch node num ber

node num ber

external jack

physical fram e

B efore Eannota tor s 15 1 tb0 4 0 L01-S 00-B H -J14 to L01-N 5
Installation of the SP Switch 95

The <device ID> value changes depending on the device type:

1. Switch chip:

 • Most significant digits: the switch board number (If the board is in an
ISB, the value 1000 is added.)

 • Least significant digit: the switch chip number

2. Adapter:

 • The switch node number (There are entries for every possible node
connected to the switch, even if the node is not actually present.)

The <port_number> is always 0 for adapters. For switch chips, the
<port_number> represents the chip’s port.

After the identification of both sides of a link comes the physical connection
information. There is one entry per side of the link. For the switch side we
have:

 • The number of the frame where the switch board is installed

 • The frame slot where the switch board is installed

 • An indication if this is an intraboard connection (SC) or an external
connection (BH)

 • If this is an external connection, the external jack for the corresponding
port

On the node side, the physical connection information contains:

 • The number of the frame where the node is installed

 • The node number

If there is no physical node connected, the frame number and node number
appear as xx.

Here we describe two topology files. The full content of the two files can be
found in B.1, “Example of a Switch Topology File” on page 247.

The topology files should not be changed, because for the resulting
configuration may be one that is not supported. All RS/6000 SP systems
are cabled in a standard way that matches the information in the topology
files. The cabling or the contents of the topology files should only be
changed for diagnostic purposes on the advice of an IBM engineer.

Important
96 Understanding and Using the SP Switch

The first example shows an annotated expected.top.1nsb.0isb.0. The first
excerpt shows some links between switch chips and nodes:

The second excerpt shows some links between switch chips:

The links corresponding to the highlighted lines in the preceding file are
shown in Figure 51 on page 98.

Node connections in frame L01 to switch 1 in L01
s 15 1 tb3 4 0 E01-S17-BH-J9 to E01-N5
s 15 0 tb3 5 0 E01-S17-BH-J10 to Exx-Nxx
s 16 2 tb3 6 0 E01-S17-BH-J24 to Exx-Nxx
s 16 3 tb3 7 0 E01-S17-BH-J23 to Exx-Nxx
s 14 3 tb3 8 0 E01-S17-BH-J31 to E01-N9
s 14 2 tb3 9 0 E01-S17-BH-J32 to Exx-Nxx
s 17 0 tb3 10 0 E01-S17-BH-J18 to Exx-Nxx

On board connections between switch chips on switch 1 in Frame L01
s 14 7 s 13 4 E01-S17-SC
s 14 6 s 12 4 E01-S17-SC
s 14 5 s 11 4 E01-S17-SC
s 14 4 s 10 4 E01-S17-SC
s 15 7 s 13 5 E01-S17-SC
s 15 6 s 12 5 E01-S17-SC
s 15 5 s 11 5 E01-S17-SC
s 15 4 s 10 5 E01-S17-SC
s 16 7 s 13 6 E01-S17-SC
Installation of the SP Switch 97

Figure 51. Links in Switch Board

As an example of connections between two switch boards, we show an
excerpt from the annotated version of the file expected.top.2nsb.0isb.0. On an
SP system with two frames, all four ports of the four link switch chips in the
first frame are connected to the corresponding ports on the second frame;
see the following example.

6.3.3 Storing the Topology File in the SDR
You should annotate the appropriate topology file by using Eannotator. After
annotating the topology file, it must be stored in the SDR with the Etopology
command. The Eannotator command has an option to automatically call
Etopology after the annotation, so you do not need to run both commands.
You can choose any name for the annotated topology file.

As explained in 6.5.2, “Applying a Partition Configuration” on page 105, you
do not need to run Eannotator (and, optionally, Etopology) when you partition

7
6
5
4

0
1
2
3

SW4

7
6
5
4

0
1
2
3

SW5

7
6
5
4

0
1
2
3

SW6

7
6
5
4

0
1
2
3

SW7

SW3

SW2

SW1

SW0

N14 J34
N13 J33
N10 J32
N9 J31

N6 J10
N5 J9
N2 J8
N1 J7

N3 J26
N4 J25
N7 J24
N8 J23

N11 J18
N12 J17
N15 J16
N16 J15

J3
J4
J5
J6

J27
J28
J29
J30

J11
J12
J13
J14

J19
J20
J21
J22

4
5
6
7

3
2
1
0

3
2
1
0

3
2
1
0

3
2
1
0

4
5
6
7

4
5
6
7

4
5
6
7

s 14 3 tb3 8 0 E01-S17-BH-J31 E01-N9

s 15 1 tb3 4 0 E01-S17-BH-J9 E01-N5

s 14 4 s 10 4 E01-S17-SC

s 15 4 s 10 5 E01-S17-SC

switch 1 to switch 2
s 13 3 s 23 3 E01-S17-BH-J3 to E02-S17-BH-J3
s 13 2 s 23 2 E01-S17-BH-J4 to E02-S17-BH-J4
s 13 1 s 23 1 E01-S17-BH-J5 to E02-S17-BH-J5
s 13 0 s 23 0 E01-S17-BH-J6 to E02-S17-BH-J6
98 Understanding and Using the SP Switch

your system. The appropriate annotated topology files are automatically
stored in the SDR for you. (Note that the PSSP software could do the same
for you when you have an unpartitioned system, since the appropriate
standard topology file is uniquely defined by the system configuration.)

The annotated topology files, one per partition, are stored as SDR files.
These files are kept in the /spdata/sys1/sdr/partitions/<ip address>/files
directory, where <ip address> is the IP alias that identifies the partition. The
name of the topology file is stored in the Switch_partition SDR class.

When a topology file is stored in the SDR, the actual name stored is the name
you specify followed by a version number. For example, if you specify the
name of your topology file as expected.top.annotated, the actual name stored
would be expected.top.annotated.1. If you again store a topology file in the
SDR for that partition, the name specified will be appended with ".2", and so
on.

6.3.4 The Topology Files for a Partitioned System
The topology files present in /etc/SP are for unpartitioned systems, and all
physical connections of the switch fabric are listed in them. In a partitioned
system, however, there is a topology file for each system partition. The
topology file for a partition only lists the links that are part of the switch
network for that partition.

The topology files for partitioned systems, as well as the other files that define
the partitioning, are in the directory /spdata/sys1/syspar_configs. Figure 52 on
page 100 shows the directory structure.
Installation of the SP Switch 99

Figure 52. Directory Structure for Partition Configuration

In this figure we highlight the location of a topology file (whose name is
topology) for a two-frame system with two partitions, one with 4 nodes and
the second with 28 nodes. The topology file shown is for the second partition
(syspar.2) of the first possible layout (layout.1).

6.4 Specifying the SP Switch Clock Distribution Tree

The clock topology file identifies the master switch board and how the clock is
distributed to all other switch boards. The master switch board generates the
synchronous clock using an internal oscillator that drives the whole switch
fabric. Any other board, a slave board, gets the clock directly or indirectly
from the master board through a switch-to-switch cable, thereby defining a
distribution tree. For more information on the clock distribution process, see
3.2, “System and Board Clocking” on page 17.

The clock topology files are located in the /etc/SP directory. The appropriate
standard clock topology file is uniquely determined by your hardware
configuration. The naming convention used for the clock topology files is the
same one used for the switch topology files, with two exceptions: the
filenames start with "Eclock" instead of "expected", and the clock topology file
for an SP Switch-8 systems has a type of 0.

You may use the Eclock command to specify your clock topology file. You can
explicitly specify the name of the distribution file, using -f <clock config

/spdata/sys1/syspar_configs

1nsb0isb 8nsb4isb3nsb0isb2nsb0isb

config.4_28 config.32config.16_16config.8_24

layout.1 layout.2 layout.8.....

layout.desc syspar.1 syspar.2

topology nodelis t (custom)
100 Understanding and Using the SP Switch

file>, or you can let the command figure out the correct name of the file by
specifying option -d.

Each clock topology file starts with a brief explanation of the contents of the
file. The full text of a sample clock topology file can be found in B.2, “Example
of a Clock Topology File” on page 250. Then two distribution trees follow: the
standard distribution and an alternate distribution. An alternate distribution is
provided so you can work around a clock distribution problem, for instance
when your master switch board is down. The distribution tree is defined using
a relatively simple syntax. For instance, an excerpt from the file
Eclock.top.7nsb.4isb.0 follows:

The important values are the first and second columns. All the other columns
simply document the clock distribution tree.

The first column identifies the switch board and the second column identifies
its clock source. The clock source is defined by the board’s mux value. The
mux value defines the clock source in the following way:

 • mux 0: the clock source is the internal oscillator, that is, this is the master
switch board.

 • mux 1: the clock source comes from external jack 3.

 • mux 2: the clock source comes from external jack 4.

 • mux 3: the clock source comes from external jack 5.

 • mux n (between 4 and 34): the clock source comes from external jack n.
(Specifying that the clock source comes from external jacks 7-10, 15-18,
23-26, and 31-34 only makes sense for intermediate switch boards.)

Switch number
| Clock multiplexor (mux) value
| | Clock receiver jack number (High Performance Switch) / (SP Switch)
| | | Clock source switch number
| | | | Clock source jack number (High Performance Switch)
| | | | | Clock source jack number (SP Switch)
| | | | | |
 1 1 J3/J3 1001 J3 J3
 2 1 J3/J3 1001 J5 J4
 3 1 J3/J3 1001 J7 J5
 4 1 J3/J3 1001 J9 J6
 5 1 J3/J3 1001 J4 J34
 6 1 J3/J3 1001 J6 J33
 7 1 J3/J3 1001 J8 J32
1001 0 xx/xx 0 xx xx
1002 1 J3/J3 1 J5 J4
1003 1 J3/J3 1 J7 J5
1004 2 J5/J4 2 J9 J6
Installation of the SP Switch 101

The values 1, 2, and 3 for mux are a remnant from HiPS, thus explaining the
non-straightforward rule of formation. As with the switch topology files, a
design objective of PSSP was to have the same set of clock configuration
files for both SP switches.

Note that all other values in the file can be derived from the mux value and
the standard SP cabling for the system in question. The remaining columns
are ignored by Eclock, except for the clock source switch (board) number,
which is used to define the order in which the switch boards’ clocks are
configured: first the master switch board, then the first level of the distribution
tree, and so forth.

Figure 53 shows how the clock is propagated in the aforementioned clock
configuration file.

Figure 53. Standard Clock Distribution for a System with 7 NSBs and 4 ISBs

The Eclock command is further discussed in 8.2, “Establishing the SP Switch
Clock” on page 134. As described there, and unlike the Etopology command,
which only updates the SDR, this command not only updates the SDR with
the clock distribution tree, but also sets the clock multiplexors. In order to do

Switch 1001
(mux=0)

Switch 1
(mux=1)

J3
J4
J5
J6

J34
J33
J32

J3

Switch 2
(mux=1)J3

Switch 3
(mux=1) J3

Switch 4
(mux=1) J3

Switch 5
(mux=1) J3

Switch 6
(mux=1) J3

Switch 7
(mux=1) J3

Switch 1002
(mux=1) J3

J3

Switch 1004
(mux=2) J4

J4
J5

J6

Switch 1003
(mux=1)
102 Understanding and Using the SP Switch

that, the whole switch is brought down and all the switch boards are reset.
Therefore, you should only issue an Eclock when strictly necessary.

Another difference between Eclock and Etopology is that Etopology must be
executed only once during installation, while Eclock must be executed
whenever the frames are powered on.

6.5 Setting up System Partitions

In this section we go over the internal changes when you partition your
system. For the actual steps you should take to partition your system, refer to
PSSP Administration Guide, SA22-7348, where the step-by-step procedures
are clearly explained.

In Figure 54 we show an overview of the partitioning steps. The main ones
follow:

 • Define the IP aliases.

 • Select an existing partition configuration or generate a new one.

 • Apply your configuration.
Installation of the SP Switch 103

Figure 54. Overview of Partitioning

6.5.1 Defining the IP Aliases
It is important for you to understand how the IP aliases are used in
partitioning.

Each partition is associated with a different IP address. All these IP
addresses must be aliases for the primary network interface in the Control
Workstation. The primary network interface is defined by the Control
Workstation’s primary hostname. The primary hostname is the IP name
returned by the hostname command. This hostname resolves to an unique IP
address. And, in its turn, this IP address is associated with one network
interface: the primary network interface.

Every partition-sensitive command, like Estart, uses the environment variable
SP_NAME to determine the partition to be acted upon. The variable must be
set to the partition´s IP address or the IP name that resolves to that address.
If SP_NAME is not set, the default system partition will be used, which is
defined by the name returned by the hostname command.

Define aliases

Archive SDR

Select configuration and layout

Shutdown all affected nodes

Apply configuration

Run setup_server on CWS

Reboot nodes

Verify configuration

Restore SDRFail ?
104 Understanding and Using the SP Switch

6.5.2 Applying a Partition Configuration
After defining your partition configuration, you should apply it using the
spapply_config script. The main steps of this script are described in PSSP
Administration Guide, SA22-7348.From the switch point of view, the main
steps are:

1. Issue the Eprimary command to create the Switch_partition object for
the partition being created, as well as to specify the default primary and
primary backup nodes.

2. Issue the Eannotator command to annotate the partition’s topology file.

3. Issue the Etopology command to store the partition’s topology in the
SDR.

After applying your configuration, you should verify it by issuing the following
commands:

spverify_config
splstdata -p
syspar_ctrl -E

6.5.3 Repartitioning the SP System
To change the partition configuration of your SP, you need to follow almost the
same steps as taken to partition a system. However, an additional critical step
is needed. For every partition to be repartitioned, you should issue the
Eunpartition command, before you apply the new configuration.

The Eunpartition script sends a request to the primary node for it to enable
the partition’s boundary chip ports. Refer to 7.3.3, “Phase One of Switch
Initialization” on page 124 for an explanation of why this is necessary. After
the ports have been enabled, the primary and primary backup fault service
daemons are restarted.

If you do not run Eunpartition before applying the new configuration, you may
face several Estart problems. To solve these problems, you should restore the
previous partitioning by restoring the SDR. If you do not have a backup of the
SDR, recovery can be accomplished by the following sequence:

1. Issuing Eclock to reset the switch, which will take down the switch in all
partitions, even those not being affected by the repartitioning.

2. Rebooting all the nodes or issuing an rc.switch command on all nodes.

3. Issuing Estart in each of the system partitions.
Installation of the SP Switch 105

6.6 Verifying the Installation

In this section we summarize some of the commands that you can use to
check the status of the switch installation and customization.

6.6.1 Verification Commands
PSSP has several commands to verify the installation and configuration of
your system.

6.6.1.1 CSS_test
The CSS_test command checks the following:

 • Whether each node is alive or not

 • It performs a switch IP check via ping

 • The level of the ssp.basic and ssp.css software in each node

The result of CSS_test is written to the /var/adm/SPlogs/CSS_test.log, besides
being shown at the terminal. Note in the following excerpt that one node is
being reported as not having IP connectivity to the switch.

6.6.1.2 spmon
The spmon command operates the system controls and monitors system
activity. It has many flags. One of the most popular ones is spmon -d, which
shows the state of all nodes in the partition. Adding the option -G, you can
get global status information.

6.6.1.3 splstdata
The splstdata command is used to list the system’s configuration data. It has
many flags, one for each type of data maintained in the SDR.

The options that are switch-related follow:

splstdata -a shows the configuration of all node adapters.

splstdata -s shows the switch connection for each node.

splstdata -p shows the partitioning information.

CSS_test: Beginning Switch IP test of the nodes in partition sp5cw0.
CSS_test: Following nodes failed Switch IP test:
sp5n05x (192.168.15.5)
CSS_test: CSS Installation Verification Test completed on
 Tue Jul 21 10:03:36 EDT 1998.
106 Understanding and Using the SP Switch

6.6.2 SDR Information
With SDRGetObjects, you can get information directly from the SDR. All flavors
of splstdata simply organize and show the SDR contents.

Following are some of the most relevant SDR classes for switch verification
and debugging.

6.6.2.1 Adapter
This class contains the adapter information shown by spethernt and
spadaptrs.

6.6.2.2 switch_responds
This class shows the current status of the switch. Arguably it is the most
consulted class while debugging switch problems. In the following sample of
the contents of the class, the first two nodes are off the switch:

As discussed in Chapter 10, “SP Switch Problem Diagnosis” on page 179,
many switch problems can be overcome by changing the switch_responds
attributes directly through the command SDRChangeAttrValues. However, this is
a delicate activity, and should be avoided; archive the SDR before trying this.

6.6.2.3 Syspar_map
The Syspar_map class is one of the most important in the SDR. It is created
early during the installation process. It is referenced by many commands to
create other object class and to execute SP-related tasks. You should verify
the objects in this class after installation or hardware reconfiguration.

SDRGetObjects switch_responds
node_number switch_responds autojoin isolated adapter_config_status
 1 0 1 1 css_ready
 5 0 1 1 css_ready
 9 1 1 0 css_ready
 13 1 1 0 css_ready
Installation of the SP Switch 107

6.6.2.4 Syspar
Syspar is a partition class and contains several attributes for the partition:
partition name, IP alias, system version, authentication methods, and so on.

6.6.2.5 Switch
This class contains the main hardware-related switch attributes, as follows:

switch_number
frame_number
slot_number
switch_partition_number
switch_type
clock_input
switch_level
switch_name
clock_source
clock_change

6.6.2.6 Switch_partition
This class is used to store the switch starting values for the partition. Its
attributes follow:

switch_partition_number
topology_filename
primary_name
arp_enabled
switch_node_number_used
primary_backup_name

SDRGetObjects Syspar_map
syspar_name syspar_addr node_number switch_node_number used node_type
sp5cw0 9.12.1.150 1 0 1 standard
sp5cw0 9.12.1.150 2 1 0 standard
sp5cw0 9.12.1.150 3 2 0 standard
sp5cw0 9.12.1.150 4 3 0 standard
sp5cw0 9.12.1.150 5 4 1 standard
sp5cw0 9.12.1.150 6 5 0 standard
sp5cw0 9.12.1.150 7 6 0 standard
sp5cw0 9.12.1.150 8 7 0 standard
sp5cw0 9.12.1.150 9 8 1 standard
sp5cw0 9.12.1.150 10 9 0 standard
sp5cw0 9.12.1.150 11 10 0 standard
sp5cw0 9.12.1.150 12 11 0 standard
sp5cw0 9.12.1.150 13 12 1 standard
sp5cw0 9.12.1.150 14 13 0 standard
sp5cw0 9.12.1.150 15 14 0 standard
sp5cw0 9.12.1.150 16 15 0 standard
108 Understanding and Using the SP Switch

oncoming_primary_name
oncoming_primary_backup_name
num_nodes_success
switch_max_ltu
switch_link_delay

6.6.3 Logs
To verify installation or customization problems, you should also check the
logs maintained by CSS.

You should initially check the AIX log through errpt, and if more information is
needed, look at the log files generated by the switch software. These files are
located in the /var/adm/SPlogs/css directory.

Refer to 9.2, “SP Switch Log Files” on page 150 for more information about
the logs and their use in solving switch-related problems.
Installation of the SP Switch 109

110 Understanding and Using the SP Switch

Chapter 7. Initialization of the SP Switch

The SP Switch is initialized in three distinct steps as depicted in Figure 55.
First, the switch adapter is configured as described in 7.1, “Configuration
Method of the SP Switch Adapter” on page 111. Next, the fault service
daemon is started as explained in 7.2, “Running the SP Switch Daemon” on
page 113. Finally, the SP Switch is started through the execution of the Estart
command, whose main steps are detailed in 7.3, “Starting the SP Switch” on
page 119.

Figure 55. Initialization of the SP Switch

7.1 Configuration Method of the SP Switch Adapter

Early in the node’s boot process, AIX configures all detected hardware. AIX’s
cfgmgr configures the SP Switch adapter, device css0, during phase 2. As
specified by the Configure method in ODM’s PdDv, cfgmgr executes the cfgtb3

CWS Nodes
Primary Non-Primary

boot

cfgmgr

configure
the switch
adapter

init

start the
fault service

daemon

Estart fault service daemon

boot

cfgmgr

configure
the switch
adapter

init

start the
fault service

daemon

start the
switch

join the
switch

tim
e

fault service daemon
© Copyright IBM Corp. 1999 111

program, which, like all internal switch-related files, is located in
/usr/lpp/ssp/css. One important note is that there is only one configuration
method, device driver, kernel extension, and fault service daemon to support
all SP Switch adapters.

The configuration method takes the following actions:

 • Defines the css0 device in ODM’s CuDv, removing any previous conflicting
definition.

 • Verifies the adapter’s physical location and resolves any bus conflicts,
unless the node uses an SP Switch MX Adapter or a SP Switch PCI
adapter. When the node is PCI-based, this step is taken care of by the
node’s firmware. PCI nodes (for example, the 332 MHz SMP nodes and
the S70/S7A external node) employ the Common Hardware Reference
Platform (CHRP) architecture, and so firmware walks the buses and
constructs a device tree: AIX obtains that device tree during boot, and
uses it to build the CuDv and CuAt ODM entries.

 • Creates the special file /dev/css0.

 • Loads the device driver, cssdd3, and sets the device to available.

 • Loads the adapter’s firmware, which is dependent on the adapter type. It
loads the xilinx_file3 file for the MCA adapter, the xilinx_file3mx file for the
MX adapter, and the xilinx_file3pci file for the PCI adapter.

 • Marks the device as available in ODM’s CuDv.

 • Loads and initializes the CSS kernel extension, fault_service_SP.

 • Executes the POST diagnostic for the adapter. This diagnostic puts the
TBIC in reset after the diagnostic runs, disabling the adapter.

If all the configuration steps have been completed successfully, the method
sets the css0’s adapter_status attribute to css_ready in ODM’s CuAt.
Otherwise, the attribute is set to an appropriate value describing the point
where configuration failed. For example, a value of make_special_fail
indicates a failure while creating the special file. You can find the list of values
this attribute can assume in PSSP: Diagnosis Guide, GA22-7350. This value
is eventually transferred to the SDR and used from there. This intermediate
step is necessary because, at this point in the boot process, the SDR is
inaccessible.

If the adapter was not configured successfully, you can check the node’s boot
log by running the alog -f /var/adm/ras/bootlog -o command.
112 Understanding and Using the SP Switch

7.2 Running the SP Switch Daemon

The next step in the switch initialization process is to start the fault service
daemon on all nodes of the SP system. The fault service daemon, sometimes
called the Worm, is responsible for initializing and monitoring the switch. This
daemon can have different personalities, that is, different roles in supporting

Be aware that the use of utilities as described here is not foolproof.
Success depends on how busy the device driver is.

When trying to resolve a node or adapter problem, you can, short of
rebooting the node, try to reconfigure the adapter. First, try to stop all users
of the adapter:

 • The Event Management subsystem:

stopsrc -s hats

 • The fault_service_Worm_RTG_SP daemon:

/usr/lpp/ssp/css/css_cdn

The ucfgtb3 utility is used to unconfigure the switch adapter. This utility sets
the device css0 as defined and marks the adapter as not_configured in the
SDR. This utility used to terminate and unload the kernel extension and
device driver, but changes in AIX’s IP implementation (as of AIX 4.1)
prevent the utility from doing so.

The utility should be invoked as follows:

ucfgtb3 -v -l css0

The cfgtb3 utility is used to configure the SP Switch adapter after it has
been unconfigured. This utility is the configuration method for the css0
adapter.

The utility should be invoked as follows:

cfgtb3 -v -l css0

After running these utilities you must restart the fault service daemon by
running rc.switch or css_restart_node, as described in the following
section.

Attention
Initialization of the SP Switch 113

the switch. The type of a node defines the personality of the daemon that is
running on that node. A node can be one of the following types:

Secondary A node which has no special role in managing the switch.
All nodes in an SP partition, except for the primary node
and the primary backup node, are secondary nodes.

Primary The node which is responsible for managing the switch.
The primary node starts the switch, monitors the switch,
and implements recovery from node, link, and chip
failures. There can only be one primary node per partition.

Primary Backup The node which is responsible for monitoring the primary
node. Whenever the primary node becomes unreachable,
the primary backup initiates a primary node takeover: it
becomes the partition’s primary node. During normal
operation, there is one primary backup node per partition.

This daemon is the fault_service_Worm_RTG_SP program and is started by
the rc.switch script. You should always start the fault service daemon via
rc.switch so that the appropriate parameters are passed to the program. The
program’s name comes from the three main functions of the daemon:

1. The daemon is responsible for servicing the Error/Status packets sent by
the switch fabric when reporting faults in the fabric, and, in response to
those packets, implements recovery actions for node, chip, and link
outages. Only the primary node receives service packets from the switch
fabric. The other nodes only deal with adapter faults, and communication
with the primary.

2. During switch initialization, the daemon runs the Worm code, which
determines the currently usable switch topology. This code is run only by
the primary node.

3. The daemon, during initialization or whenever there is a topology change,
calculates the routes between nodes using the Route Table Generation
(RTG) code. This code, in contrast to the Worm code, is run by all
standard nodes.

The last two functions are detailed in 7.3, “Starting the SP Switch” on page
119.

7.2.1 The Daemon Initialization Script
The fault service daemon is started in the rc.switch script. This script is run
by the init process, as specified in the fsd inittab entry. The script’s main
actions are:
114 Understanding and Using the SP Switch

1. It kills any previous instantiation of the fault service daemon.

2. It zeros the switch_responds attribute in the switch_responds class in the
SDR.

3. It checks, using the Switch_partition class in the SDR, whether this node
is the current primary or the current primary backup node. If the node is
one of these, the script changes the SDR indicating that there is no longer
a primary or a primary backup node.

4. It gets the value of the adapter_status attribute out of ODM and updates
the node’s adapter_config_status attribute in the switch_responds class in
the SDR. If the attribute’s value is not css_ready, the script exits with an
error.

5. It configures the IP interface css0. The interface’s IP address, its netmask,
and whether the switch network uses ARP are taken out of ODM’s CuAt.
The interface is marked as down.

6. The fault service daemon is started. It receives as parameters the node’s
switch node number and to which switch board, switch chip, and port it is
connected. This information is also taken from ODM’s CuAt, which
contains the following attributes:

These attributes are added during node installation or customization by
pssp_script. The appropriate values come from the Node, Adapter, and
Switch_partition SDR objects. Note that the switch board number, switch
chip, and switch chip port values are a hard-coded function of the node’s
switch node number. And, in turn, the switch node number is usually a
hard-coded function of the node number. These values are computed by
the /usr/lpp/ssp/install/bin/SDR_config script, which handles a change to

odmget -q name=css CuAt | grep -E "attr|val"
 attribute = "switch_node_num"
 value = "0"
 attribute = "switch_number"
 value = "1"
 attribute = "switch_chip"
 value = "5"
 attribute = "switch_chip_por"
 value = "3"
 attribute = "arp_enabled"
 value = "no"
 attribute = "netaddr"
 value = "192.168.15.1"
 attribute = "netmask"
 value = "255.255.255.0"
 attribute = "state"
 value = "up"
Initialization of the SP Switch 115

the association between node number and switch node number if specified
in the /etc/switch.info file.

Be aware, though, that the incorrect use of such a file may introduce
several switch connection problems and, most important, its use is not
supported by IBM.

7. Just before exiting, the script runs the usconfig utility. This utility
predefines some User Space window parameters.

7.2.2 The Fault Service Daemon
The fault service daemon, when launched, starts the adapter’s microcode
and takes the TBIC out of reset, enabling the adapter.

The daemon then enters into its main loop, waiting for service packets from
the primary node, service packets from the switch fabric (if this node is the
primary node), interrupts from the adapter, or E-commands. E-commands,
like Estart, send requests to the fault service daemon through the i_stub_SP
or sp_fs_control programs, which queue those requests in the fault service
work queue maintained by the fault_service_SP kernel extension. Requests
from the adapter are also put in the same work queue.

Whenever an error is detected in a chip, that component sends an
Error/Status service packet to the primary node. Such packets arrivals are
asynchronous with respect to the fault service daemon, since they are
unsolicited. Upon receiving an asynchronous Error/Status packet, the primary
daemon starts a recovery procedure, which initially tries to reset the error. If
the error cannot be reset, which means there is a permanent error in some
component, the daemon disables the faulty node, chip, or link and initiates the
update of the switch topology, as described in 7.3.5, “The Generation of
Routes” on page 127.

The primary node’s fault service daemon does not depend on the switch
fabric successfully notifying it when a problem arises. It periodically scans the
whole switch fabric to check for link and chip failures. The switch scan is
executed every two minutes, sending Read Status service packets to all
active switch chips. If errors are reported or no response is received, the
faulty component is disabled and the topology is updated. The primary
backup node is also scanned. If its daemon is not responsive, an error entry
is cut in the AIX error log and a primary backup takeover takes place, where a
new primary backup node is selected.

If no errors were detected in the first part of the scan, the daemon checks for
nodes waiting to be automatically unfenced. Any node that is off the switch
116 Understanding and Using the SP Switch

and has its autojoin attribute set in the SDR is checked. If there are no errors
in the corresponding node-to-switch link, an unfence is tried. If there are
errors, nothing is done, and the daemon will recheck the link to the node in
the next scan. If the actual unfence fails for three consecutive periods,
probably due to an intermittent problem in that node’s adapter, then the
primary daemon turns off the autojoin attribute for the node. Automatic node
unfencing is a new feature in PSSP 3.1.

Every daemon in the system handles error conditions that occur locally. They
handle adapter hardware errors, bad packets received, and microcode errors.
If an error is not recoverable or reoccurs beyond its specified threshold, it is
considered permanent. A permanent error leaves the TBIC in reset,
effectively removing the node from the switch network. When a permanent
error is detected the autojoin attribute in the SDR is turned off, so that the
node will not unfence at the next scan.

When the fault service daemon terminates abnormally with an unexpected
software error condition, or a SIGTERM signal, or a SIGBUS signal, it stops
the microcode and puts the TBIC in reset, disabling the adapter. It also turns
off its switch_responds attribute in the SDR.

An interesting situation arises when the daemon is killed with the SIGKILL
signal. The node does not have a fault service daemon running but continues
to be part of the switch fabric. All protocols continue to run normally. The
daemon is only needed, and its absence then causes a fence of the node,
when the switch configuration is changed (an unfence of another node, for
instance), or when Estart is run.

The fault service daemon, besides cutting error entries in the AIX log,
generates several log files of its own: daemon.stderr, daemon.stdout,
worm.trace, fs_daemon_print.file, cable_miswire and flt. The first two files are
not used much in PSSP 3.1. The worm.trace and fs_daemon_print.file files
trace many of the daemon’s activities. The file cable_miswire reports any
node-to-switch or switch-to-switch connection apparently miswired. The last
file, flt, is definitely the most important log file generated by the daemon. It
contains a summary of major events and errors encountered by the daemon.

Also, whenever the daemon faces a serious error, it automatically invokes the
css.snap utility, which collects the aforementioned logs and other files
generated by the daemon, as well as the output of some diagnostics utilities
into a single compressed tar image. The description of the fault service
daemon’s log files, as well as the use of the css.snap command, can be found
in Chapter 9, “SP Switch Problem Determination Tools” on page 149.
Initialization of the SP Switch 117

7.2.3 Managing the rc.switch Script
In PSSP 3.1, rc.switch is started well into the node’s initialization
process—more precisely, right after the SP configuration script. You must put
any configuration script that expects the switch to be up and running after the
fsd inittab entry. In particular, you have to be aware that all usual AIX network
configuration scripts, like rc.net, rc.tcpip, and rc.nfs, are started before
rc.switch. This means that you cannot reference the switch in the standard
network configuration scripts. For instance, any switch IP route configuration
cannot be put in the ODM through smit mkroute, but must be added to a later
script.

However, Inserting the inittab entry appropriately is not enough. By default,
the fsd entry is created with action once, which means that it will be run
exactly once; and, more importantly, that init will continue with the following
inittab entries, without waiting for rc.switch to finish. If you want to apply any
configuration or to start an application that depends on the switch, besides
inserting the corresponding entry after the fsd entry, you need to change the
latter’s action to wait. For example, you could execute chitab on all the nodes
with the following command:

dsh -a chitab \"fsd:2:wait:/usr/lpp/ssp/css/rc.switch\"

Whenever the fsd entry has a wait action, the script changes its behavior and
waits for the node to join the switch before exiting. Changing the fsd entry in
all the nodes in itself is not enough, either, since the rc.switch does not start
the SP Switch, just the node’s daemon. For a node to join the switch, the
switch has to be running with at least one node, the primary node. The script
does not have any logic to start the switch, it assumes that the Estart
command has already been executed. To prevent the initialization process
from being blocked indefinitely when the node is unable to join the switch or
the node is the primary node, rc.switch waits for a maximum of five minutes
for the node to join the switch, after which it exits.

This feature of PSSP 3.1, allied with the automatic starting of the switch
described in 8.7, “Automatic Management of the SP Switch” on page 142,
effectively guarantees that in most situations, any later configuration scripts
will only run after the switch is up.
118 Understanding and Using the SP Switch

7.3 Starting the SP Switch

After the SP Switch adapters have been configured and the fault service
daemons have been started, the system is ready for the third and last step in
the switch initialization process: the execution of the Estart command.

The Estart command should be executed from the Control Workstation to
start the switch for the current system partition. It can be executed manually
or automatically. The features that allow you to automatically start the switch
are discussed in 8.7, “Automatic Management of the SP Switch” on page 142.

The Estart command initially does some sanity checking:

1. It checks whether any switch board has lost its clock source. It actually
checks whether the clock_change attribute in the Switch class has a value
of yes whenever a change is sensed in some clock-related hardware
variables. The error message output by Estart follows:

2. It checks whether the oncoming primary and oncoming primary backup
nodes are up. For a complete discussion of current and oncoming primary
and primary backup nodes, see 8.1, “Selecting the Primary and Primary
Backup Nodes” on page 131.

3. It checks if the fault service daemon is running on both the oncoming
primary and backup nodes.

The rc.switch script generates an rc.switch.log file with the output of its
execution. This file, as well as all switch-related log files, can be found in
the /var/adm/SPlogs/css directory.

You can directly execute the rc.switch script to restart the fault service
daemon. This script may be run in a node where the connection to the
switch has been lost. When the daemon is restarted, it resets the adapter,
which may solve some adapter problems, like, for example, losing the clock
after an Eclock. Another way to restart the daemon is to execute the
css_restart_node script, which includes a call to the rc.switch script.

Attention

Estart
Estart: 0028-070 Unable to Estart, the clock source for one or more
switch boards has changed. Eclock must be run to re-establish the clock
distribution of the switch clock network.
Initialization of the SP Switch 119

4. It checks that the oncoming primary node is not isolated. If the oncoming
primary backup is isolated, it prints a warning message and another node
will be selected as primary backup.

If all the tests pass, Estart invokes, using rsh, the Estart_sw script on the
oncoming primary node.

7.3.1 Distributing the Topology File
The Estart_sw script starts running in the current partition’s oncoming primary
node. Its first step is to distribute, if necessary, the file containing the switch’s
expected topology to all the nodes of the partition.

If there is a file named /etc/SP/expected.top on the primary node, it is used as
the partition’s topology file. This file can be created to debug the switch, but
must be removed from the primary node after all tests are done. If such a file
does not exist, the primary node extracts the topology file from the SDR and
copies it to disk. The name of the file is the one specified in the Etopology
command with a sequence number appended. You can find out the name of
the topology file for all partitions with the command:

SDRGetObjects -x Switch_partition topology_filename

Then the script checks if the topology file needs to be distributed to the nodes
in the partition. This verification is done by matching the number of nodes
with switch adapters to the value of the num_nodes_success attribute in the
Switch_partition SDR class. This attribute saves the number of nodes that
successfully received the current topology file in the last distribution. If the
values do not match, the topology file is distributed to all the nodes.

If the topology file is distributed with some node down, the
num_nodes_success does not count that node. On the next Estart, the
topology file is tentatively distributed to all nodes. If the node is still down, the
attribute in the SDR is still down by one. This continues until that node is up
and running, and thus, the attribute becomes equal to the number of nodes.

The attribute num_nodes_success is reset by the Etopology command to
force the distribution of the new topology file. You can also reset this value
when you need to redistribute the topology file. This could be useful, for
example, when the topology file in one of the nodes has been lost or
become corrupted. To reset this attribute, you can use:

SDRChangeAttrValues Switch_partition num_nodes_success=0

Attention
120 Understanding and Using the SP Switch

The topology file is distributed using the parallel copy command pcp. To
accelerate the distribution of the topology file in large systems, the boot/install
servers are used to help in the distribution. The primary node copies the
topology file to each boot/install server, and then each server copies its copy
to the nodes for which it is responsible. For instance, in a 128-node system,
the topology file distribution finishes in approximately 10 seconds. If a
boot/install server is unavailable, the distribution of the topology file to that
server’s nodes will be done by the Control Workstation.

The boot/install servers check whether there were any distribution errors by
checking the timestamp and size of the files. They also inform the primary
node which nodes have successfully received a copy. The primary node
collects these values and updates the num_nodes_success attribute in the
SDR. The distribution process creates a log file on the primary node, named
/var/adm/SPlogs/css/dist_topology.log.

In PSSP 3.1, if there is a problem during the distribution of the topology file,
the switch initialization continues, giving the following warning message.

It is even possible that the problem that caused the distribution failure (an
authentication problem, for instance), does not prevent the node from joining
the switch: the node tries to use an existing copy of the topology file. But if the
topology file is not present or is corrupted, the node will fail to join the switch
and its fault service daemon will terminate.

7.3.2 Starting the Worm Code
After the expected topology file has been distributed, the Estart_sw script
checks to ensure that the oncoming primary node (the node where the script
is running) is not the partition’s current primary node. If it is, Estart_sw
changes the personality of the fault service daemon running on the current

Estart
Estart: 0028-061 Estart is being issued to the primary node: sp5n09.msc.itso.ib\
m.com.
dist_to_bootservers: 0028-178 Received errors in distribution of topology file f\
rom bootserver to at least one node.
See /var/adm/SPlogs/css/dist_topology.log on primary node for details.
dist_to_bootservers: 0028-075 Could not distribute the topology file to these no\
des.
They may not come up on the switch network.
sp5n05.msc.itso.ibm.com
Switch initialization started on sp5n09.msc.itso.ibm.com.
Initialized 15 node(s).
Switch initialization completed.
#

Initialization of the SP Switch 121

primary node. This action causes the daemon in that node to stop acting as
the partition’s primary node and start behaving as a secondary node. The
current primary backup, if any, also has its personality changed to avoid
conflicts between a possible primary node takeover and the Estart. If a
takeover is currently in progress, the Estart finishes with an error.

Finally, the fault service daemon is signaled so it can start the switch. At this
point in time, the message Switch initialization started on <primary node> is
sent to the Control Workstation.

The Estart_sw script now waits for the fault service daemon to complete the
switch initialization. The initialization is considered complete when the
daemon creates the act.top.<pid> file, where <pid> is the PID of Estart_sw.
This file is created in the usual /var/adm/SPlogs/css directory and its contents
are as follows:

Note that the nodes are identified by their switch node numbers.

Number of active node(s) seen by the Worm:
4
Number_of_linksbad: 0
The primary backup node is:
12
The following switch node(s) are active:
8
12
4
0
The topology file used by the Worm:
/etc/SP/expected.top.annotated.4
122 Understanding and Using the SP Switch

After the act.top.<pid> is created by the fault service daemon, the Estart_sw
script reads that file and, from its contents, updates the SDR with the current
primary and primary backup nodes. It also displays the number of initialized
nodes and the number of uninitialized links, if any, at the Control Workstation.
As its last step, the script renames the act.top.<pid> file to topology.data.

The script verifies whether there was a problem during the switch initialization
in two ways:

1. It waits a limited amount of time for the creation of the act.top.<pid> file.
2. It checks whether the fault service daemon is still active.

If either condition fails, the script sends the appropriate message to the
Control Workstation.

The act.top file is generated by the fault service daemon whenever it
initializes the switch. One instance of switch initialization is the execution of
the Estart command, but it is not the only one. The primary node’s daemon
reinitialized the switch under the covers in several situations, generating a
different file name for each situation, as follows:

1. When an unrecoverable error occurs during a scan (act.top.0)

2. When a primary node takeover takes place (act.top.1)

3. When an asynchronous error cannot be recovered (act.top.2)

4. When a fence or an unfence faces an unrecoverable error (act.top.3)

Therefore, you may sometimes use the presence of such act.top.n files as
an indication of an error in the switch, and use its contents to check the
result of the switch reinitialization. We should emphasize that this
under-the-covers switch initialization is not a reexecution of the Estart
command, but solely the reexecution of the Worm code described in the
following sections.

Attention

Although Estart_sw sets the time-out in accordance to the size of the
system, under extreme conditions that time limit may be insufficient for the
primary fault service daemon to finish the switch initialization (for example,
if the primary node is heavily loaded). If you run into this problem, you
should choose another primary node.

Attention
Initialization of the SP Switch 123

7.3.3 Phase One of Switch Initialization
When signaled by i_stub_SP, the primary node’s fault service daemon
executes the Worm code. This code is divided into two phases: in phase one,
the Worm finds the actual topology of the switch fabric; in phase two, the
Worm initializes all functional chips and nodes with runtime parameters and
routes.

The Worm uses a Breadth First Search (BFS) algorithm to discover the
topology of the switch. BFS is a very well-known algorithm to visit all nodes in
a graph. The basic idea behind the algorithm is to have a First-In-First-Out
queue containing vertices to visit and to mark all visited vertices, as follows:

1. Pick an initial vertex and put it in the queue.
2. Get a vertex from the queue. If the queue is empty, we are done.
3. Mark the current vertex as visited.
4. Traverse a link from the current vertex. If there are no more links to

traverse, go to step 2.
5. Check whether the vertex on the other side of the link has already been

visited.
6. If it is has not been visited yet, put it at the end of the queue.
7. In any case, go to step 4.

The Worm uses the expected topology file to build the graph. Both switch
chips and processor nodes are the vertices of the graph. The initial vertex is
the primary node. The node-to-chip connections and the chip-to-chip
connections are the links of the graph.

It is important to recognize that only the connections present in the topology
file are used to build the graph, and, therefore, will be part of the partition’s
switch network. This is the basic idea behind the construction of the topology
files in a partitioned SP system. Understanding how this works can also be
very useful in case you are having trouble with some links or chips. You can
disable them by appropriately changing the topology file.

Nodes that are customer-fenced, that is, that have the SDR attribute isolated
equal to 1 and the autojoin attribute equal to 0, are removed from the list of
vertices to be visited. These nodes will not join the switch.

For example, consider an SP with a single frame and 8 wide nodes, as shown
in Figure 56 on page 125. Suppose that the primary node is node 9.
124 Understanding and Using the SP Switch

Figure 56. The Switch Board (faint nodes fenced or down)

The Worm code visits the switch board in the following order:

From Node 9 to Chip 4
From Chip 4 to Node 13, Chip 0, Chip 1, Chip 2, Chip 3
From Chip 0 to (Chip 4), Chip 5, Chip 6, Chip 7
From Chip 1 to (Chip 4), (Chip 5), (Chip 6), (Chip 7)
From Chip 2 to (Chip 4), (Chip 5), (Chip 6), (Chip 7)
From Chip 3 to (Chip 4), (Chip 5), (Chip 6), (Chip 7)
From Chip 5 to Node 5, Node 1, (Chip 0), (Chip 1), (Chip 2), (Chip 3)
From Chip 6 to Node 3, Node 7, (Chip 0), (Chip 1), (Chip 2), (Chip 3)
From Chip 7 to Node 11, Node 15, (Chip 0), (Chip 1), (Chip 2), (Chip 3)

Note that switch chips are visited more than once. These revisits, shown
within parentheses, are needed to check all links between chips and to check
for miswires in multiboard configurations.

The Worm initializes a switch chip on its first visit. A single route to the
primary node is given to each, and all error reporting is disabled, except for
Re-Timer and Link Synchronization errors. The Worm also informs each chip
of its device ID.

If the Worm cannot talk to a chip or a node, the Worm considers the link to
that component to be faulty and the corresponding predecessor chip port is
disabled. Wrap-plugs that should not be there are detected and the user
informed. Also, all chip ports not present in the topology file are disabled.

7
6
5
4

0
1
2
3

SW4

7
6
5
4

0
1
2
3

SW5

7
6
5
4

0
1
2
3

SW6

7
6
5
4

0
1
2
3

SW7

SW3

SW2

SW1

SW0

N14
N13
N10

N9

N6
N5
N2
N1

N3
N4
N7
N8

N11
N12
N15
N16

4
5
6
7

3
2
1
0

3
2
1
0

3
2
1
0

3
2
1
0

4
5
6
7

4
5
6
7

4
5
6
7

Initialization of the SP Switch 125

During a revisit, a switch chip returns its device ID to the primary node, and if
it is not the expected one, a miswire is suspected. A miswire involving a node
is detected during the first visit to the node, since the node’s device ID is
already known and reported by that node’s fault service daemon. During this
visit, each node also receives the name of the partition’s expected topology
file name, as well as a single route back to the primary node.

The Worm now knows the actual topology of the network. It constructs the
out.top file, which contains the expected topology file with annotations
describing the status of links and devices as detected by the Worm’s first
phase. You can find the list of possible device and link status in 9.2.4, “The
out.top File” on page 160. With the actual topology known, the Worm
generates the two disjoint service routes from all nodes and chips back to the
primary node.

7.3.4 Phase Two of the Switch Initialization
The Worm's second phase starts by resetting all outstanding errors in all
switch chips. Then it reinitializes all chips and nodes, sending the two disjoint
routes to the primary node, as well as enabling error reporting and initializing
of all thresholds.

The Worm then initializes the time-of-day (TOD) counter in all chips and
adapters. Before the TOD initialization proper, the Worm quiesces the fabric,
broadcasting to all nodes a command to stop sending packets since such

Note that if the Worm finds a defective link, it disables all ports on each
side of the link (unless, of course, other chip or link problems prevent it
from getting to both chips). In subsequent switch reinitializations, the Worm
will always find the link down, even if that link is then usable (perhaps a
faulty cable was replaced). In the Worm’s BFS, one of the chips is
necessarily visited first. Since the other side of the link is disabled, it will
disable the current port. When it gets to the chip on the other side, it will
enable its port, but will find the opposite side down, and will disable this
port, too.

Thus, to enable a link that was down and then fixed, you need to reset the
switch chips by running the Eclock command. A similar problem occurs
when two partitions are joined without a previous Eunpartition. The Worm
will fail to reclaim some of the links because ports on the other side were
left disabled.

Attention
126 Understanding and Using the SP Switch

might foil the TOD update algorithm’s timing. After finishing the initialization of
TOD, traffic on the switch is resumed.

The fault service daemon initializes the TOD in all components with almost
the same value. The TOD counters do not necessarily have the same value
because the algorithm used in the SP Switch estimates the distance
(therefore, the delay) between switch chips. The values of the counters,
though, do not drift apart since the same global oscillator increments them.
The switch’s TOD is not used by the PSSP and AIX software, but by CSS
application debug. The global time implemented by these counters allows a
precise (for all practical purposes, at least) ordering of switch events, mainly
fault occurrences. Applications have access to the TOD counter through an
ioctl.

7.3.5 The Generation of Routes
The Worm’s second phase continues with the distribution of the actual switch
topology to all the nodes. To reduce the amount of information broadcast
through the switch, this distribution is done by sending one or more DB
Update service packets to all the nodes. These packets contain only the links
that were found down. Each DB Update packet is acknowledged by each
node. In SP systems larger than 64-way, the DB Updates distribution is also
done in a hierarchical fashion. The highest-numbered node in each frame is
used as a distribution server: each of them receives the DB Updates from the
primary node and redistributes the updates to the nodes in its frame.

The fault service daemons on all nodes use the DB Updates to create an
out.top file by updating the expected topology file. The update will fail and the
node will be fenced if the expected topology file (whose name was distributed
during the Worm’s first phase) does not exist on that node. The
acknowledgment of the last DB Update packet is only sent after the node has
managed to create out.top. The absence of this acknowledgment packet
informs the primary fault service daemon that there is a problem.

All participant nodes now have the actual topology file and are ready to run
the RTG code to generate the routes between the nodes.

The TOD counter is called a "switch clock" in some SP documentation, and
should not be confused with the oscillating signal that drives the switch
fabric. It should also not be mistaken with the time of day maintained by
AIX, which is synchronized in an SP system through the use of the NTP

Important
Initialization of the SP Switch 127

The goal of the RTG code is to generate four best routes between each pair
of nodes. The algorithm uses (a logical) BFS to find all the shortest paths
between each pair of nodes. The algorithm counts how many times each link
in the network is used by the already chosen paths. For each new pair of
nodes, the algorithm chooses four among all the shortest paths so that the
use of the links is balanced. Therefore, RTG generates balanced, static,
shortest routes. If traffic between nodes is random or uniformly distributed,
the load on links and chips will be balanced. If RTG cannot generate four
different shortest routes between two nodes, it replicates a route(s) found, so
the adapter always receives four routes.

Note that the algorithm calculates the best routes between all pair of nodes.
This is necessary to obtain a global load balance. Every daemon runs RTG,
calculating all best routes. But only the routes between the local node and the
other nodes are loaded to the adapter. This could seem a waste of computing
cycles, since one node could compute the routes for every other node and
distribute them. This used to be the case with the predecessor
High-Performance Switch. But the approach was abandoned because of the
larger overhead of distributing the routes through the switch, mainly in larger
SP systems.

The actual loading of the routes is only done when the Worm broadcasts a
Load Routes service packet. Each node then loads the calculated routes into
its adapter and sends an acknowledgment back to the primary node.

Dependent nodes are an exception to the preceding discussion. For
dependent nodes, the routes are generated by the primary node and sent to
the dependent node’s adapter.

The distribution of DB updates and the generation and loading of routes are
also carried out whenever the topology of the switch changes; that is during,
fences, unfences, and recovery from permanent errors.

During the Worm’s second phase, error recovery is not in effect. The topology
of the switch has to be stable so it can be distributed to all nodes and the
routes between nodes can be generated. An asynchronous error or the
absence of an acknowledgment is considered unrecoverable: the node or the
chip in error is disabled and the initialization is retried. The primary fault
service daemon attempts to initialize the switch four times. If the switch
cannot initialize, the daemon terminates.

The switch initialization is now finished. If the specified primary backup node
did not come up, the primary node chooses a new primary backup node and
notifies the fault service daemon on that node to change its personality. The
128 Understanding and Using the SP Switch

primary node updates the switch_responds class in the SDR for each node
successfully started: the switch_responds attribute is set to 1 and the autojoin
attribute is set to 1. Setting the autojoin attribute to 1 after a successful Estart
is a new feature of PSSP 3.1.

Meanwhile, all fault service daemons enable the IP and User Space protocols
for their nodes. In particular, the IP interface css0 is configured as up.
Initialization of the SP Switch 129

130 Understanding and Using the SP Switch

Chapter 8. Managing the SP Switch

In this chapter we go through the actions you take to manage the SP Switch
during normal operation. To verify the complete syntax of the commands
mentioned in this chapter, refer to the PSSP: Command and Technical
Reference, SA22-7351.

8.1 Selecting the Primary and Primary Backup Nodes

The primary node initializes the switch fabric for its partition, monitors it,
processes switch operations, and handles errors reported from the switch
fabric. Therefore, you should choose the primary node carefully. Your primary
node should not be a node with high switch network traffic. Service traffic in
an SP Switch has no priority over application traffic, which means that service
traffic can be delayed enough to start generating time-outs in the fault service
daemon. In consequence, nonexistent errors in the switch fabric may end up
being reported, as well as nodes and chips unnecessarily being taken out of
the switch.

The primary node is not a single point of failure on an SP system. There is
also a primary backup node for each partition.

The primary backup node passively listens for activity from the primary node.
The daemon checks every two and a half minutes whether it has been
scanned by the primary node. If the primary backup node is not contacted by
the primary node during two consecutive check periods, it considers the
primary down and assumes its role. This takeover will happen at most seven
minutes after the primary node failure (one scan time of two minutes plus two
detection periods of two and a half minutes). The primary node takeover
involves:

 • Selecting itself as the oncoming primary node

 • Reinitializing the switch fabric

 • Selecting a new primary backup node

The new primary backup node is selected so that it is as far as possible from
the primary node, so the chances of a simultaneous failure is as low as
possible. This translates into the following:

1. Select a node attached to a different switch board.

2. If there is a single switch board, select a node attached to a different
switch chip.
© Copyright IBM Corp. 1999 131

3. Otherwise, select any node.

The primary node also watches over the primary backup node. If the primary
node detects that the primary backup node can no longer be contacted on the
switch fabric, it initiates a primary backup node takeover, selecting a new
primary backup node and using the same criteria previously described.

During the period of time between the failure or loss of the primary node and
the takeover by the primary backup node, the switch fabric continues to
function. Failures that happen while there is no active primary node are
detected during the reinitialization of the switch fabric by the new primary
node.

Using the Eprimary command, the administrator may select two nodes, one to
be used as the primary node and the other as the primary backup node. Note
that a dependent node cannot be a primary or primary backup node for the
SP Switch. The Eprimary command selects a default oncoming primary or
oncoming backup primary node if one is not specified. The default oncoming
primary is the lowest numbered node in the partition, and the default
oncoming primary backup is the highest numbered node in the partition.

Until the next Estart is issued, the nodes specified in the Eprimary command
are referred to as the oncoming primary and oncoming primary backup
nodes, and are recorded in the oncoming_primary_name and
oncoming_primary_backup_name attributes of the Switch_partition SDR
class. Once Estart completes, the primary_name attribute is updated based
on the oncoming_primary_name attribute and the primary_backup_name
attribute is updated based on the oncoming_primary_backup_name attribute.

The primary_name and primary_backup_name attributes are also
automatically updated when primary node or primary backup node failures

The reinitialization of the switch during a primary node takeover is not an
Estart, as explained in 7.3.2, “Starting the Worm Code” on page 121. A
noticeable difference is that, in this case, the daemon generates an
act.top.1 file, instead of the usual topology.data file generated by the Estart
command. You can trace a sequence of primary node takeovers by
checking the existence and timestamp of such files, using, for example, the
command:

dsh -a ls -o /var/adm/SPlogs/css/act.top.1

Attention
132 Understanding and Using the SP Switch

occur. Therefore, the primary_name and primary_backup_name attributes
reflect the current state of the system.

The following scenario, taken out of the PSSP: Administration Guide,
SA22-7348, describes the interaction between the current values and the
oncoming values. To simplify the example we use node numbers instead of
reliable hostnames, which are the actual values stored in the Switch_partition
class.

Initially, the primary node and backup primary node fields have the value
none. In a 16-node system, the oncoming primary node field has the default
value of 1 and the oncoming primary backup has the default value of 16.

Figure 57. Initial Values

When Estart is executed, the node specified in the oncoming primary field
becomes the primary node. The node specified in the oncoming primary
backup becomes the primary backup.

Figure 58. Values after Estart

Current
Primary
Node

Oncoming
Primary
Node

Oncoming
Primary
Backup
Node

Current
Primary
Backup
Node

none

16

1

none

Current
Primary
Node

Oncoming
Primary
Node

Oncoming
Primary
Backup
Node

Current
Primary
Backup
Node

1

16

1

16
Managing the SP Switch 133

If the primary backup node fails, the primary node automatically selects a
replacement.

Figure 59. Values after Primary Backup Node Takeover

If the primary node fails, the primary backup node automatically becomes the
primary node and a new primary backup is selected.

Figure 60. Values after Primary Node Takeover

In summary, primary and primary backup fields reflect the current state of the
partition, and the oncoming fields are not applicable until the next invocation
of the Estart command.

8.2 Establishing the SP Switch Clock

Before starting the SP Switch, you must make sure that the data clock
distribution tree is correctly established.

The Eclock command establishes a clock distribution tree after the system is
powered up or when an alternate clock tree must be selected. It sets the
clocking sources that provide the clocking of each switch board. If the current

Current
Primary
Node

Oncoming
Primary
Node

Oncoming
Primary
Backup
Node

Current
Primary
Backup
Node

1

16

1

15

Current
Primary
Node

Oncoming
Primary
Node

Oncoming
Primary
Backup
Node

Current
Primary
Backup
Node

15

16

1

2

134 Understanding and Using the SP Switch

clock distribution tree is not functional, for instance when the current master
switch board is down, an alternate clock distribution tree must be selected
and the switch reinitialized.

The standard clock configuration trees are specified in clock configuration
files. The syntax and contents of such files are explained in Section 6.4,
“Specifying the SP Switch Clock Distribution Tree” on page 100. There is one
configuration file for each type of SP system. One alternate configuration is
also provided in the shipped files.

8.2.1 Verifying the Clock Distribution Tree
All Eclock options that change the clock distribution tree, save the info in the
Switch SDR class. The relevant content of this class for a two-frame system
follows:

The clock_input attribute contains the bulkhead jack that is carrying the clock
signal that is driving the corresponding switch board. A value of 0 indicates
that this board is the master board. The clock_source attribute indicates
which switch board is generating the clock signal. This value is a function of
the jack being used and the standard SP cabling for the system in question. It
is saved in the SDR to help the Eclock script in correctly ordering the setting
of the clock sources.

The information in the SDR indicates what the clock distribution tree should
be. To get the actual clock distribution tree you should issue the spmon -G -d
command and consult the frame information. A sample (partial) output for the
same two-frame system follows:

SDRGetObjects Switch switch_number clock_input clock_source

switch_number clock_input clock_source
 1 0 0
 2 3 1

4. Checking frames

 Controller Slot 17 Switch Switch Power supplies
Frame Responds Switch Power Clocking A B C D
--
 1 yes yes on 0 on on on on
 2 yes yes on 3 on on on N/A
Managing the SP Switch 135

You can see that the Switch Clocking column matches the values of the
clock_input attribute of the SDR.

8.2.2 Using the Eclock Command
When you first install your system or after adding a new switch board you
should run the Eclock command with the -f or -d flags.

Whenever you need to reestablish your clock distribution tree, for example
after powering up your system, you may use the Eclock -r command, which
extracts the clock distribution data from the SDR. Using Eclock with such a
flag, instead of the better known -f or -d flags, will reestablish the most recent
clock distribution tree, which may not be the standard clock distribution.
Assume that you are having a clock distribution problem, and to work around
it you established an alternate distribution. A subsequent Eclock -d would not
reestablish the appropriate distribution tree: your switch network will not
come up complete, or may not come up at all; and you will need to issue
another Eclock. By having the habit of using Eclock -r you would not run into
such problems.

When you have a single switch board system, you do not need to run Eclock
after powering up your system, since there is only one possible clock source,
the default. You should be aware, though, that the master switch chip and PLL
chosen by the Eclock script are not the same as the power-on defaults. This
could lead to a behavior difference in the extremely unlikely event of a single
PLL or chip failure.

If you are having any hardware problem that is affecting your clock
distribution tree, you need to establish a different distribution tree. Your first
option is to try the alternate distribution that comes in the clock configuration
files. You invoke the alternate distribution by issuing Eclock -a <clock config
file>.

If the standard alternate tree does not work around the hardware problem you
are facing, then you may want to create your own clock configuration file or
change the clock source settings of individual switch boards.

You should use the following information with extreme care and at your own
discretion. The Eclock command does take your switch network down, and
its incorrect use may leave your network unusable. If you are facing serious
clock distribution problems, we advise you to get help from IBM Service.

Important
136 Understanding and Using the SP Switch

For example, assume you have a 112-way system, that is, a system with 7
node switch boards and 4 intermediate switch boards, and that node switch
board number 2 is down. Looking at the clock configuration file for such a
system (listed in B.2, “Example of a Clock Topology File” on page 250), you
can find out that switch board 2 distributes the clock to switch board 1004 in
the default configuration. This means that both switch boards 2 and 1004 will
be unavailable. The first is down due to whatever hardware problem it is
having, the second because it has lost its clock source.

If you run Eclock with the alternate clock configuration, you will find out that
switch board 1004 is up but there are now two other switch boards with no
clock source, intermediate switch boards 1001 and 1003. Now you are in
worse shape than before.

Therefore, before trying to establish the alternate clock configuration, you
should check whether it will circumvent the hardware that is failing or not. The
best solution in this situation is not to use the shipped alternate configuration.
Assume, then, that we do not run Eclock -a.

The first thing to do is to look into the annotated switch topology file for your
system, assuming you have an unpartitioned system. Find the external links
of the clockless switch board, which is 1004. Then pick the first link that
connects that board to an on-line switch board. For instance, the first link in
the file for switch board 1004 will do:

s 10043 3 s 13 0 E08-S07-BH-J3 to E01-S17-BH-J6

So we have a cable running from node switch board 1 jack 6, to switch board
1004 jack 3. At this point we are only interested in where the cable connects
to the clockless switch board, which is jack 3. We must transform that value
into the corresponding mux value, which is 1. See 6.4, “Specifying the SP
Switch Clock Distribution Tree” on page 100. Now we are ready to issue the
appropriate Eclock command:

Eclock -s 1004 -m 1

Switch board 1004 should be receiving the clock signal by now, but we are
not done yet. Eclock -s does not update the clock_source attribute in the
SDR. Therefore, it is still indicating that board 1004 is getting the clock signal
from board 2, not 1. In this case, and probably in many others, this
discrepancy will not make any difference, since this value is used just to order
the changes to the clock sources. But to make sure the SDR is correct, we
should issue the command:

SDRChangeAttrValues Switch switch_number==1004 clock_source=1
Managing the SP Switch 137

Even if the switch network was up during the previous procedure, an Estart is
needed for the primary daemon to recognize the returning intermediate
switch board. But because of the way the Worm initializes the switch, not all
links of the ISB will be initialized. See 7.3.3, “Phase One of Switch
Initialization” on page 124. Therefore, you need to issue an Eclock -r before
reinitializing the switch. This additional step is only needed because the
returning switch board is an intermediate switch board. If it were a node
switch board, you would just need to run Estart after Eclock -s.

Some final notes about changing the clock distribution tree:

 • Although the switch hardware allows the use of any tree configuration,
Eclock does not allow all possible configurations. Namely, the script only
works with trees with three levels or less (which in practice is no
hindrance).

 • Option -s works correctly if you are changing the clock source of a switch
board that is feeding its clock signal to other boards: it resets not only the
board itself but also all its slave boards. But it may not work correctly if
some of these slave boards feed the clock signal to other boards. If by any
chance you run into this kind of problem, you should know that the correct
order to set the sources is: down the tree in a breadth-first-search (BFS)
manner.

 • If you would like to save your current clock distribution tree in a file, do not
use Eclock -c. The -c flag does not work correctly with the SP Switch.
What you need to do is construct the clock topology file by hand. To
reduce your work, remember that only the Switch Number, Clock
Multiplexor (mux) value, and Clock Source switch number columns are
actually used by the software.

8.2.3 The Actions of Eclock
Independently of the option you used to specify the clock distribution tree, the
Eclock command takes the following steps:

1. Kills the fault service daemons on all the nodes of the specified switch
boards. All options, with the only exception of -s, act on all switch boards
in the system.

2. Sets the clock multiplexors (that is, the clock sources).

3. Starts a power-on-reset of the switch boards and switch chips.

4. Restarts the daemons.

5. Checks whether the affected switch board is receiving a clock signal.
138 Understanding and Using the SP Switch

8.3 Starting the SP Switch

Once you have established the clock source and your primary and primary
backup nodes are running, you can start the SP Switch by issuing the Estart
command. When you are using the Switch Admin daemon, described in 8.7,
“Automatic Management of the SP Switch” on page 142, Estart is
automatically invoked by that daemon in most situations.

Starting the switch with only the primary and primary backup nodes up is
enough in PSSP 3.1 because of its automatic unfence feature. Unless an

Since Eclock resets all chips, you can use it to solve some Estart problems.
For instance, if you had a faulty switch-to-switch cable that was eventually
replaced, any subsequent Estart will still find that link not operational (see
7.3.3, “Phase One of Switch Initialization” on page 124). To solve this
problem you run the Eclock command, which returns the entire switch fabric
to ground zero.

In large SP systems, you could try to avoid bringing down your entire switch
network by running Eclock -s for the switch board connected to that cable
and farthest away from the primary node, that is, farthest away with respect
to the BFS algorithm. This could be complicated to figure out, depending
on your system configuration. You may try, then, the following approach:

1. Your system does not have ISBs: change your primary node to a node in
one of the switch boards connected to the cable; Eclock the switch board
on the other side of the cable; run Estart.

2. Your system has ISBs: change your primary node to a node that is not in
the node switch board connected to the cable; Eclock the node switch
board connected to the cable; run Estart.

Observe that with the preceding step we are avoiding the Eclock of an
intermediate switch board. We leave as an exercise to you to figure out why
the Eclock of an ISB will never do you any good.

A final note: always keep in mind the clock configuration tree. If the switch
board you are resetting feeds its clock to other boards, these other boards
have to be reset, too. So, in some situations, a piecewise approach may not
bring you any significant gain.

Attention
Managing the SP Switch 139

irrecoverable error occurs or you explicitly fence a node, all nodes
automatically join the switch shortly after their fault service daemon is
started.

You can issue the Estart with the -m option, which specifies that the Emonitor
daemon should be started. But in PSSP 3.1, the Emonitor subsystem is no
longer needed, because of the new Switch Admin daemon and the automatic
unfence features. However, if you do not run the Switch Admin daemon you
may still wish to use the Emonitor subsystem. And if you are using a primary
node at PSSP 2.4 or earlier in a coexistence environment, you may still need
to use the Emonitor subsystem.

8.4 Removing a Node from the SP Switch Network

The Efence command isolates nodes from the switch network. Once a node is
fenced, it cannot communicate with other nodes on the switch network, nor
cause errors on the network. In PSSP 3.1 you only need to fence a node
when you need that node to be running, but out of the switch network (for
instance, to do some software maintenance). Before PSSP 3.1, you needed
to fence a node that was going to be rebooted or powered off to prevent such
nodes from impacting other nodes. This is no longer necessary since the fault
service daemon, when exiting, disconnects from the switch fabric by putting
the TBIC in reset.

The Efence has an -autojoin option, which allows the node to automatically
join the switch once the node is again operational. In PSSP 3.1, this option is
no longer needed due to the automatic unfence feature. Note further that in
PSSP 3.1, a node that is fenced with autojoin will automatically join the switch
within two minutes. However, if the primary node is at PSSP 2.4 or earlier, the
autojoin option enables the nodes in the argument list to be fenced and to
automatically rejoin the current switch network if the node is rebooted, the
fault service daemon is restarted, or an Estart command is issued.

8.5 Adding a Node to the SP Switch Network

The Eunfence command adds a node to the switch network a node that was
previously removed from it. If your primary node is at PSSP 3.1, you only
need to unfence a node in two situations:

 • The node was previously removed through the Efence command.
 • The node was previously removed because an unrecoverable error was

detected.
140 Understanding and Using the SP Switch

If your primary node is at PSSP 2.4 or earlier, you also need to unfence a
node when the node has been rebooted or the fault service daemon has been
restarted without a previous Efence -autojoin command. But if you are
running the Emonitor subsystem, it automatically attempts to unfence a node
when the node is rebooted.

Eunfence first distributes the current topology file to the nodes before they are
unfenced. The Eunfence command, unlike Estart, unconditionally distributes
the topology file to all nodes being unfenced. If the topology file distribution to
a node fails, that node is not unfenced.

8.6 Stopping the SP Switch

There is no single command to stop the SP Switch. If you need to take down
the whole switch network without shutting down your nodes, you must kill all
the fault service daemons in the partition. You can use an undocumented
command, css_cdn, to do that from the Control Workstation:

dsh -a /usr/lpp/ssp/css/css_cdn

If your primary daemon is at PSSP 2.4 or earlier, the preceding procedure
could leave some of your nodes fenced. You should run the Equiesce
command to avoid this problem. For the same reason, you should also run the
Equiesce command before shutting down one or more nodes if your primary

Coexistence Requirements:

Note that the automatic unfence is a feature of the fault service daemon
running in the primary node and works even when all other nodes are at
PSSP 2.4 or earlier. But for a pre-PSSP 3.1 fault service daemon to be able
to coexist with this new feature, the node should be at one of the following
PTF sets:

 • PSSP 2.1 - PTF set 30 (warning: a coexistence environment with nodes
at PSSP 2.1 is not supported)

 • PSSP 2.2 - PTF set 17

 • PSSP 2.3 - PTF set 9

 • PSSP 2.4 - any

The fix provided in the aforementioned PTFs makes the fault service

 Important
Managing the SP Switch 141

and primary backup nodes are not the first ones to be shut down. You must
be careful, for example, with cluster shutdowns.

The Equiesce command changes the personality of the primary and the
primary backup nodes to secondary, effectively disabling switch error
recovery and primary node takeover. After an Equiesce, data still flows over
the switch.

You must issue an Estart to reestablish switch recovery and primary node
takeover after running Equiesce.

8.7 Automatic Management of the SP Switch

In this section we discuss the use and internals of the Switch Admin daemon.
This daemon is a new feature of PSSP 3.1 and, together with automatic
unfence, replaces the Emonitor daemon available in previous releases. We
start this section briefly discussing the use of Emonitor, followed by a
thorough presentation of the PSSP 3.1 Switch Admin daemon. We finish the
chapter describing situations where there is still a need for your intervention
to keep the switch running.

8.7.1 Managing the Switch Before PSSP 3.1
The Emonitor daemon was released in PSSP 2.2 to solve two common
problems in administering the SP Switch:

1. Nodes were automatically fenced after a shutdown without a previous
Efence -autojoin. You had to explicitly unfence the node after it was
started.

2. Switch initialization was not automatic. If you had your primary and
primary backup nodes down, you had to explicitly Estart the switch after
the nodes had come up.

The pre-PSSP 3.1 Emonitor daemon runs on the Control Workstation and
monitors host_responds through spmon. Whenever a node comes up, it sets a
three minute timer, waiting for other nodes to come up. Each time another
node comes up, the timer is reset to three more minutes, up to a maximum of
12 minutes. When the timer triggers, it checks whether any node listed in the
/etc/SP/Emonitor.cfg file has host_responds on and switch_responds off. If
there is any, it tries to bring it back to the switch network. If the primary node
is coming back and the primary backup shows as active in the SDR, Emonitor
takes no action—a primary node takeover should take place. If the preceding
condition is false and the primary or the primary backup nodes are coming
142 Understanding and Using the SP Switch

back, the monitor attempts an Estart. If a secondary node that has autojoin
off is coming back, the daemon attempts to unfence the node.

One problem that Emonitor does not address is the need for an explicit Estart
after your system is powered up. The Emonitor daemon itself can only be
started through the Estart -m command. After this manual Estart, nodes
rebooting automatically join the switch, at least in most normal situations.

Also, if you need to keep a node fenced after a reboot, you need to edit
Emonitor’s configuration file and remove the node from it. Otherwise the node
will get unfenced after the reboot, even if you fence it without -autojoin. A
further inconvenience of the Emonitor daemon is that you have to set up its
configuration file before using it.

In PSSP 3.1 the behavior of the Emonitor daemon is slightly changed when
your primary daemon is at PSSP 3.1. The Emonitor daemon is aware of the
new automatic unfence feature and does not attempt to unfence a node in any
situation. Thus, a node that is explicitly fenced, either by you or by the system
after an unrecoverable error, remains fenced, even if the node is in the
daemon’s configuration file.

The PSSP 3.1 Emonitor also checks whether the Switch Admin daemon is
active, and if so, does not attempt an Estart when one is needed.

8.7.2 The Switch Admin Daemon
The objective of the Switch Admin daemon is to automate the setup, the
startup, and the handling of events that affect the switch. The ultimate
objective behind this implementation is to make the switch behave, from a
management point of view, more and more like a LAN. In PSSP 3.1, the
Switch Admin daemon handles the following situation:

Start the switch in any partition where no node is acting as the primary node.
This occurs after a power up or reboot of all nodes in a partition, or anytime
the primary and primary backup are included in the set of nodes that are
rebooted. The Switch Admin daemon runs Estart whenever the oncoming
primary node shows itself as available through host_responds.

The Switch Admin is the program cssadm and runs on the Control
Workstation. The Switch Admin daemon is started out of inittab and is SRC
controlled. The subsystem name for the daemon is swtadmd. There is a
single subsystem for the entire SP system, that is, a single daemon
administers all system partitions.
Managing the SP Switch 143

The Switch Admin daemon has a configuration file,
/spdata/sys1/ha/css/cssadm.cfg. It is shipped enabling node recovery with
the following contents:

Node 1

If you need to disable the daemon, you should edit the file, changing the 1 to
a 0. Next you should stop the daemon with the command:

stopsrc -s swtadmd

You may also stop the subsystem and remove the swtadmd entry from inittab.

The daemon generates several log files:

 • cssadm.debug contains entries for each event received and how it was
handled.

 • cssadm.stderr contains unexpected error messages received by the
daemon while performing an external command, like Estart.

 • cssadm.stdout contains information messages received by the daemon
while performing external commands.

8.7.3 The Implementation of the Switch Admin Daemon
The daemon uses the High Availability Event Management subsystem to get
notification about node-related events. The daemon registers for events for
the following resource variables:

 • IBM.PSSP.Response.Host.state, which indicates if a node has
connectivity over the en0 LAN adapter, as determined by the High
Availability Topology Services subsystem. A value of 1 indicates
connectivity; 0 indicates no connectivity. This variable represents the
host_responds attribute in the SDR.

 • IBM.PSSP.Membership.LANAdapter.state, which indicates if a LAN
adapter in a node has connectivity, as determined by Topology Services. A
value of 1 indicates connectivity; 0 indicates no connectivity. This variable,
instantiated for adapter css0, does not represent the switch_responds
SDR attribute, but only represents IP connectivity over the switch. In most
situations this causes no behavioral difference, but you should always
keep in mind the distinction between those states.

The daemon registers the following events with Event Management:

1. A node comes online: IBM.PSSP.Response.Node.state (NodeNum=*) ==
1.
144 Understanding and Using the SP Switch

2. A node loses connectivity over the switch network, for instance when the
node is shut down or the fault service daemon terminates:
IBM.PSSP.Membership.LANAdapter.state
(NodeNum=*;AdapterType=css;AdapterNum=0) == 0.

By monitoring these events, the daemon is able to intervene in many of the
cases where normal primary node takeover is not effective.

The following are the tests and resulting actions triggered by the occurrence
of any of the above events:

1. If the current primary node has just lost its IP connectivity or there is no
current primary node in the partition (primary_name==none in the
Switch_partition SDR object):

 • If the primary backup node has switch_responds on, the daemon takes
no action as normal primary takeover should occur.

 • If the primary backup node has switch_responds off and the oncoming
primary node has host_responds on, the daemon attempts an Estart.

 • If the oncoming primary has host_responds off, no action is taken. The
daemon waits until the oncoming primary comes up.

2. If the oncoming primary node has just come on-line:

 • An Estart is attempted.

If the Estart fails, the daemon takes no recovery action. It waits for another
significant event to occur.

In addition, when the daemon starts, it verifies, in every partition, whether the
current primary node has no switch connectivity or there is no current primary
node. If so, it simulates the corresponding event and executes the algorithm
previously described.

Note that the actions taken when test 1 above is true are also taken whenever
any node has come up and there is no current primary node. For example,
assume you are doing a cluster start-up and your oncoming primary node
comes up before your oncoming primary backup node. The daemon is
notified that the oncoming primary node is up and attempts an Estart. The
command fails because the oncoming primary backup is still down. But when
the oncoming primary backup comes up, the first condition still holds and the
daemon attempts a second Estart, which this time should succeed.

Notice also that an Estart is attempted whenever the oncoming primary node
comes on-line. At a first glance, it could seem unnecessary to reinitialize the
switch if it is up and running. But if the switch is up and the oncoming primary
Managing the SP Switch 145

node comes online, a primary node takeover may have taken place. And one
would want to have the chosen primary node to reassume its functions after
solving whatever problem caused the takeover to happen in the first place.

Also, by issuing an unconditional Estart, the daemon overcomes some
possible anomalies between the actual state of the system and the SDR.
Namely, the attribute primary_name (or primary_backup_name) is not set to
none when the fault service daemon on the current primary (or primary
backup) node goes down, only when rc.switch is run in that node. Thus, just
checking the SDR attributes is not enough to assure that the switch is really
up. A simpler solution, instead of going over several checks, is just to Estart
when the oncoming primary comes up.

8.7.4 Management Tasks Not Yet Automated
You should realize that the Switch Admin daemon is intended to be neither a
switch diagnosing nor a problem solving tool. It does not test for any condition
that could lead to an Estart failure nor does it have any built-in logic to
recover from a switch failure. Following are some events not handled by the
daemon:

1. If the oncoming primary node does not come on-line or its fault service
daemon does not run, the switch does not initialize. The daemon does not
take any steps to detect and overcome such problems, like choosing
another primary node.

2. The daemon does not check whether the system was just powered on and,
therefore, an Eclock may well be needed before the Estart. Therefore,
when powering up your system, you should: power on the frames and
switches; run the Eclock command; power on your nodes; and let the
Switch Admin daemon Estart your system.

3. The daemon does not check for any clock distribution problem in the
system, for instance whether the master switch board is down.
146 Understanding and Using the SP Switch

Part 3. SP Switch Problem Determination
© Copyright IBM Corp. 1999 147

148 Understanding and Using the SP Switch

Chapter 9. SP Switch Problem Determination Tools

In this chapter we describe some of the tools available for problem
determination of the SP Switch. We briefly discuss material discussed
elsewhere, like the use of the AIX error log and the monitoring tools available
in PSSP. But we also go into detail describing the contents of several SP
Switch log files and diagnosing utilities.

9.1 Error Logging

Error logging in the SP System uses the AIX Error Log facilities, the Berkeley
Software Distribution (BSD) syslog, and several other log files. Going through
all those logs to diagnose a problem could be quite a challenge. But the latest
releases of PSSP have been improved so all detected errors for the SP
Switch and the SP Switch adapter have an entry in the AIX error log.

In addition, some of the SP Switch logging events may trigger the execution
of the /usr/lpp/ssp/css/css.snap script to generate a snapshot of the log files
on the node where the error was reported. See section 9.4, “SP Switch
Utilities” on page 175 for more information on the css.snap script.

Especially in larger systems, having to go though the AIX error log on all
nodes and on the Control Workstation is not an easy task. To make problem
determination easier, PSSP 3.1 introduces a centralized error log in the
Control Workstation that contains a summary of all switch-related error log
entries, as described in 9.2.1, “The Centralized Switch Error Log” on page
152. This summary log file should be used as the starting point for any SP
Switch problem solving.

9.1.1 Viewing Error Log Information
Enter the following command to view all the SP Switch adapter error log
entries in all nodes:

dsh -a errpt -a -N css

Enter the following command to view all the SP Switch error log entries in all
nodes:

dsh -a errpt -a -N Worm

Enter the following command to view all the SP Switch adapter diagnostics
log entries in all nodes:

dsh -a errpt -a -N css0
© Copyright IBM Corp. 1999 149

A table with all switch-related error log entries can be found in PSSP:
Diagnosis Guide, GA22-7350. Each entry contains a brief explanation of the
error, possible causes, and what actions could be taken to recover from it.

You can also use the AIX Error Notification Facility to be notified of errors
reported in the AIX error log as soon as they occur. This facility causes the
execution of an ODM-defined method when a particular error occurs. For
example, you could create a method which would send you an e-mail
whenever the fault service daemon cuts an error log entry
(en_resource="Worm"). Refer to the PSSP: Diagnosis Guide, GA22-7350, for
more information.

9.1.2 Log Filesystem Size Consideration
All SP log files are kept in the /var filesystem. The size of the log files grows
with time, and if the /var filesystem reaches 100%, the system runs into
problems. To prevent this situation, you should monitor the usage of /var. For
instance, you could use the High Availability Problem Management
subsystem, as exemplified in the /usr/lpp/ssp/install/bin/pmandefaults
script, generating an e-mail whenever the filesystem is more than 95% full.

To reduce the usage of /var you may trim log files or remove old log files. AIX
has a default crontab entry that removes all hardware error entries after 90
days and all software error entries after 30 days. SP-related log files in
/var/adm/SPlogs are cleaned up on the nodes by the script
/usr/lpp/ssp/bin/cleanup.logs.nodes. Log files are cleaned up on the Control
Workstation by /usr/lpp/ssp/bin/cleanup.logs.ws.

When you are frequently running some diagnosing scripts, make sure you
save the log files in /var/adm/SPlogs/css. They may be automatically
overwritten or deleted to generate free space for new log files. The script
css.snap, for example, checks the filesystem size at startup and cleans up old
files.

9.2 SP Switch Log Files

The SP system also uses some SP-specific log files. Some logs reside on the
Control Workstation (CWS) only, and some reside only on the SP nodes.
150 Understanding and Using the SP Switch

Others reside on both. Table 4 summarizes and shows the location of the logs
you can reference when diagnosing SP Switch problems.

Table 4. SP Switch Log Files

Log File Type of Message Location

/var/adm/SPlogs/css/act.top.n Estart_sw output, renamed to
topology.data after SP Switch initialization

Primary

/var/adm/SPlogs/css/cable_miswire Miswire information Primary

/var/adm/SPlogs/css/dist_topology.log System error messages occurring during
the distribution of the topology file to the
nodes

Primary

/var/adm/SPlogs/css/dtbx.trace SP Switch adapter diagnostics output Nodes

/var/adm/SPlogs/css/Eclock.log Eclock related information CWS

/var/adm/SPlogs/css/Ecommands.log Log entries of all E-commands CWS

/var/adm/SPlogs/css/flt Hardware error conditions found on the SP
Switch, recovery actions taken by the fault
service daemon and general operations
that alter the SP Switch configuration

Primary

/var/adm/SPlogs/css/fs_daemon_print.file Information from the fault service daemon Nodes

/var/adm/SPlogs/css/out.top SP Switch link information Nodes

/var/adm/SPlogs/css/rc.switch.log fault service daemon Initialization
messages

Nodes

/var/adm/SPlogs/css/router.log SP Switch routing information Nodes

/var/adm/SPlogs/css/summlog Summary records for CSS events CWS

/var/adm/SPlogs/css/worm.trace Initialization information Nodes

/var/adm/SPlogs/css/logevnt.out Output of css.logevnt, invoked as an ODM
error notification object method

CWS

/var/adm/SPlogs/SPdaemon.log Messages generated by system daemons,
including hardware errors

CWS

/var/adm/SPlogs/spmgr/spgrd.log SP SNMP Agent messages CWS and
Nodes
SP Switch Problem Determination Tools 151

Table 5 shows the message identifiers used by PSSP for switch-related error
or informational messages. Further information about error messages in the
SP log files may be found in the PSSP: Messages Reference, GA22-7352.

Table 5. SP Switch-Related Message Identifiers

9.2.1 The Centralized Switch Error Log
A new daemon, css.summlog, runs on the Control Workstation and listens for
log change events generated by the ODM method running on all nodes,
independent of partition boundaries. The daemon is SRC-controlled and its
subsystem name is swtlog.

Use the summary CSS error log as the primary starting point to diagnose SP
Switch problems. The centralized summary log resides in the
/var/adm/SPlogs/css/summlog file on the Control Workstation. Any SP Switch
or SP Switch adapter error that has an entry cut in the AIX error log in any
node triggers the generation of a summary record. Each record is appended
in the order received by the Control Workstation. The fields of the summary
record are shown in Table 6 on page 153.

The summlog file allows you to identify all nodes that are affected by a fault,
and shows the failure symptoms on each node. The log is formatted for
processing by user scripts. It will be the basis for automated error analysis
mechanisms in future releases. The log cleaning scripts include this log to
keep it to a reasonable size.

An example of the summlog file follows:

Identifier Message

0028-nnn Switch support

2510-nnn Switch fault service daemon

2511-nnn Switch table support

2543-nnn Switch admin daemon

You should check the summlog periodically to find out problems on the
switch that were automatically recovered or do not have any perceptible
consequences.

Important
152 Understanding and Using the SP Switch

Table 6 provides descriptions of the fields that compose each summary
record:

Table 6. Summary Record Fields

9.2.2 The flt File
The flt file is found in the /var/adm/SPlogs/css directory on any node that is or
was a primary node. The flt file is used to log hardware error conditions on
the switch, recovery actions taken by the fault service daemon and general
operations that alter the switch configuration.

The messages in the flt file can be informational (i), notification (n), or error
messages (e).

In the following paragraphs we show some examples of the contents of the flt
file. One general observation is about the device id, shown in several
messages. It is either a switch node number or the chip id plus 100000. For
example, an id of 100015 indicates chip 5 in switch board 1. The description
in this section and the following ones assume an understanding of the
workings of the SP Switch. Refer to Chapter 3, “Communication Network
Hardware” on page 13, Chapter 4, “Communicating with the SP Switch” on
page 49, and Chapter 7, “Initialization of the SP Switch” on page 111 for more
information.

Name Description

time The error log time for the entry

node The reliable hostname of the source node

css.snap dump Y indicates that a ccs.snap dump was taken, N indicates no
dump was taken.

syspar_name The system partition name

index The error log index from the reporting node

label The error log entry label field

080310081998 sp5n05 N sp5cw0 281 SP_SW_RCVLNKSYNC_RE
080311181998 sp5n01 Y sp5cw0 298 TB3_LINK_RE
080319091998 sp5n09 N sp5cw0 195 SP_SW_RSGN_BKUP_RE
080319091998 sp5n05 N sp5cw0 285 SP_SW_RSGN_PRIM_RE
080319101998 sp5n09 N sp5cw0 197 SP_SW_UNINI_NODE_RE
080319101998 sp5n09 N sp5cw0 198 SP_SW_UNINI_LINK_RE
080319101998 sp5n09 N sp5cw0 199 SP_SW_SDR_FAIL_RE
SP Switch Problem Determination Tools 153

1. switch chip or ports disabled

During switch initialization the fault service daemon tries to communicate
with all switch chips and nodes in the configuration. If for any number of
reasons a switch chip fails to respond or returns an error, the daemon
disables the switch chip. This is noted in the flt file with the following entry:

(i) 07/24/98 17:34:32 : 2510-798 Disabling Switch chip - device_id =
100016

In this example the entire device is disabled (switch chip 16). Often only
the port or ports that are reporting problems are disabled. When this
happens you find the following entry in the flt file (in this example, port 3
on switch chip 5 is disabled):

(n) 07/30/98 17:12:52 : 2510-743 Disabling port 3 (jack 7) of chip 5 on
the switch in slot 17 of frame 1

2. Switch initialization error status

When a switch chip reports an error to the fault service daemon during
switch initialization, it places the following entry in the flt file:

(n) 07/29/98 17:38:02 : Switch and Adapter Error bits found during
switch initialization.
(i) 07/29/98 17:38:02 : Device ID = 100014
(i) 07/29/98 17:38:02 : 2510-793 First Error Capture Register =
000008.
(i) 07/29/98 17:38:02 : 2510-741 Second Error Capture Registers =
00000000 00000040 00000000 00000000 00000040 000000

In this example, switch chip 14 reported the error status packet. Decoding
the error capture registers should give you some idea of what types of
errors the switch chip is detecting.

In the following example, the value in the First Error Capture Register is
0x000001. This signifies that this is the first Estart since the switch was
reset.

(i) 07/29/98 17:36:02 : Device ID = 100010
(i) 07/29/98 17:36:02 : 2510-793 First Error Capture Register =
000001.
(i) 07/29/98 17:36:02 : 2510-741 Second Error Capture Registers =
00000000 00000000 00000000 00000000 00000000 000001

See 3.4.5, “Error Isolation” on page 34 for the explanation the error
registers. See also A.2.1, “First Error Capture Register” on page 242 and
A.2.2, “Second Error Capture Register” on page 243.

3. Switch error recovery
154 Understanding and Using the SP Switch

Recovery is also part of the fault service daemon. When Error/Status
packets are received at the primary node during normal switch operations,
the daemon will attempt to clear up the problem on the switch chip. This
involves sending initialization packets back to the switch chip in an attempt
to reset the error. The reset sequence can be found in the flt file as shown:

(i) 08/05/98 14:39:58 : 2510-744 SP Switch error recovery initiated.
(i) 08/05/98 14:39:58 : 2510-793 First Error Capture Register =
000008.
(i) 08/05/98 14:39:58 : 2510-741 Second Error Capture Registers =
00000000 00000000 00000000 00000000 00000010 000000
(i) 08/05/98 14:39:58 : 2510-740 Packet Sequence Number = 219 Switch
Time-Of-Day = 0x800005a11fa0dd1f
(i) __Date__ __Time__ _Msgid__ Reg ___Location___ Ch Po
__Type_of_SECR_Error__
(n) 08/05/98 14:39:58 : 2510-778 FEC E01-S17-BH-J07 5 3 Send Link Sync
Failure
(i) 08/05/98 14:39:58 : 2510-759 Error count threshold has been
exceeded, initiating recovery action(s).
(n) 08/05/98 14:39:58 : 2510-743 Disabling port 3 (jack 7) of chip 5 on
the switch in slot 17 of frame 1
(n) 08/05/98 14:39:58 : 2510-749 Turning off switchResponds bits for
node 0 in the SDR
(i) 08/05/98 14:39:58 : 2510-742 Transmitting a Reset Error packet;
 Route = 0x4500000000000001,
 Recv Error Resets = 0x0000, Sender Error Resets = 0x0002,
 Central Queue Resets = 0x00, Service Logic Resets = 0x00

4. Broadcast failure

During switch initialization, the primary fault service daemon broadcasts
several commands to all nodes. When the node finishes executing the
command successfully, it sends an acknowledgment to the primary node.
The primary then tracks the acknowledgments to determine if everyone
has responded.

One of the possible errors during a broadcast operation follows:

(i) 07/28/98 16:24:08 : 2510-606 A switch Error/Status service packet
was received during a broadcast operation.

It is not uncommon to find packets with error capture registers
containing all zeroes. They are responses to the recovery code when it
resets errors on the switch chips.

Attention
SP Switch Problem Determination Tools 155

It says that while fault service daemon was looking for node responses it
received an "error status" packet from some component. This indicates
that the switch fabric is not stable and must be reinitialized.

Another possible error is the following:

(i) 07/28/98 16:24:08 : 2510-607 Timed-out waiting for acknowledgments
from broadcast operation.

This message tells you that one or more of the nodes failed to
acknowledge the node command sent to it. This should lead you to believe
that there is some type of problem with the node or nodes that failed to
respond.

5. Switch initialization as a recovery action

The switch may be reinitialized by the fault service daemon to recover from
error conditions. The following message tells you that the fault service
daemon made a decision to reinitialize the switch fabric:

(i) 07/28/98 16:24:08 : 2510-816 Switch recovery timed-out waiting for a
Error/Status packet from switch. Estart will be executed.

Note that, contrary to what the message says, the actual Estart script will
not be executed, but only the fault service daemon code that initializes the
switch.

6. Switch Initialization as a command (Estart)

Whenever the Estart command is issued, it is noted in the flt file. The entry
for this is as follows:

(i) 07/24/98 20:11:59 : 2510-744 Estart initiated.
(i) 07/24/98 20:11:59 : The date and time = Fri Jul 24 20:11:59 1998

Estart contacts the fault service daemon on the primary node to start the
switch.

7. Node drops off the switch

The Receiver Link Synchronization Failure messages are generated
whenever the primary daemon detects a node dropping off the switch.

(i) __Date__ __Time__ _Msgid__ Reg ___Location___ Ch Po
__Type_of_SECR_Error__
(n) 08/12/98 11:06:47 : 2510-767 SEC E01-S17-BH-J07 5 3 Recv Link Sync
Failure

8. Primary node takeover

When the backup node takes over control of the switch, the following entry
is placed in the flt file:
156 Understanding and Using the SP Switch

(i) 07/24/98 17:34:08 : 2510-812 Backup node starting Primary node
take-over.
(i) 07/24/98 17:34:09 : The Primary backup is node sp5n01

The message also indicates what node was chosen as the new primary
backup. In the case shown the switch node name is sp5n01. When the
takeover is successfully completed, the following entry is noted in the flt
file:

(i) 07/24/98 17:34:35 : 2510-813 Primary backup node completed Primary
node take-over.

9. Eunfence operation

There are three phases to an unfence operation. The first is the
reenablement of the switch port connected to the node. The second is
reinitializing the node onto the switch fabric. The third is broadcasting to
all nodes that this node has joined the switch. Once the switch port is
enabled, the following message is placed in the flt:

(i) 07/24/98 20:20:31 : 2510-815 Port enable for unfence of node sp5n01
completed.

This should tell you that the switch hardware successfully unfenced the
switch port on the chip and the SP Switch adapter is synchronized with the
switch fabric. Once the other two phases complete, the following entry is
placed in the flt file:

(i) 07/24/98 20:20:36 : Node sp5n01 UnFenced.

If any of the operations fail, the following message is shown in the flt file:

(e) 07/24/98 20:11:59 : 2510-894 Error found in handleUnfence()

10.Efence operation

Just like the unfence operation, the fence operation has three phases. The
first is to disable the node switch adapter. The second is to disable the
associated switch chip port. The last piece to be done is to notify the
operational nodes that the node is no longer attached to the switch. Once
phases 1 and 2 are completed, the following entry is made in the flt file:

(i) 07/27/98 09:53:11 : 2510-814 Port disable for fence of node sp5n13
completed.

When phase 3 is completed, the following message is added to the flt file:

(i) 07/27/98 09:53:14 : Node sp5n13 Fenced.

11.Switch scan failure

The fault service daemon on the primary node checks the health of the
switch network every two minutes. It sends a read status packet to all
switch chips and the backup node to verify their status. If the daemon
SP Switch Problem Determination Tools 157

receives a bad error status from any of these devices, recovery actions are
taken to remove the faulty component. When this happens the following
entry is noted in the flt file:

(i) 07/28/98 16:24:08 : 2510-906 Scan detected a problem with device
100015

12.Primary node switch port disabled

Whenever Estart is run and the fault service daemon finds its switch port
disabled it issues the following message and terminates:

(n) 08/06/98 19:19:13 : 2510-820 Primary’s link to the switch network is
not in the initialized state. Estart could not be executed.
(n) 08/06/98 19:19:13 : 2510-823 The fault service daemon process has
exited.

13.Node personality changes

Some reasons for personality change follow.

If a new primary was assigned, a subsequent Estart will show the
following on the new oncoming primary node:

(i) 07/24/98 20:01:14 : 2510-811 Fault service daemon’s personality has
been changed to Primary.

If the primary fault service daemon determined that it could not control the
switch fabric and resigned from being the primary node, the following will
be informed:

(i) 07/24/98 18:38:05 : 2510-913 Resigning from being Primary node.
(i) 07/24/98 18:38:05 : 2510-810 Fault service daemon personality
changed to Secondary.

The primary fault service daemon was unable to change a node’s
personality to backup, generating the following messages:

(i) 07/24/98 19:38:55: 2510-819 Changing remote node’s personality to be
the Primary backup failed. Return code equals 1. Estart will be
executed.

14.Route generation

The fault service daemon generates two types of routes, processor routes
and service routes. Processor routes are used for node-to-node
communication. Service routes are used for switch chip to primary node
communication. The following message in the flt file denotes failure in the
service route generation process on the primary node:

(e) 07/30/98 10:55:30 : 2510-712 generate_service_routes() failed with
rc= 123
158 Understanding and Using the SP Switch

The following message could appear on any node when there is a failure
on the node-to-node route generation:

(e) 07/30/98 11:49:30 : 2510-714 generate_processor_routes() failed with
rc= 124

In either case the route generation return code should help determine
what type of problem is at hand. See C.2, “Return Codes from Route Table
Generation” on page 255. The following entries indicate that the fault
service daemon was able to generate the specified routes:

(i) 07/30/98 10:49:30 : Service routes generated.

(i) 07/30/98 10:49:30 : Processor routes generated.

Another route generation-related message follows. It indicates that the
daemon was able to successfully download the route table to the switch
adapter.

(i) 07/30/98 10:49:31 : Processor routes down loaded successfully.

15.Fault service daemon signals (SIGBUS, SIGTERM, SIGDANGER)

The fault service daemon processes a number of different signals. The
following may be found in the flt file:

(n) 07/30/98 11:14:57 : 2510-195 The fault service daemon got a SIGTERM
signal.

(n) 07/30/98 11:14:57 : 2510-196 The fault service daemon got a
SIGDANGER signal, probably because the system is starting to get low on
pg space.

(n) 07/30/98 11:14:57 : 2510-197 The fault service daemon got a SIGBUS
signal.

The first message is the most common, and probably indicates that
rc.switch was run on the node.

16.Initialization retried

The switch initialization portion of the fault service daemon is a two-phase
process. The first is the discovery phase (BFS), the second the actual
initialization of the switch fabric. During phase two, any time that a
component of the switch fabric is determined to be faulty, it is removed
from the configuration and the initialization is retried. The following entry is
accordingly put in the flt file:

(i) 07/24/98 19:40:05 : 2510-821 The second phase of the switch
initialization will be retried.

There is also a retry limit of three sets on reinitializing the switch. When
this limit is met, the following entry is placed in the flt file:
SP Switch Problem Determination Tools 159

(e) 07/24/98 19:40:05 : 2510-822 The second phase of switch
initialization reached retry limit. Estart failed.

9.2.3 The rc.switch.log File
The rc.switch.log file is found in the /var/adm/SPlogs/css directory and exists
on each node in an SP system with an SP Switch. The file is created
everytime the rc.switch script is issued on that particular node. The previous
rc.switch.log is saved to the rc.switch.log.previous file. The file is
self-explanatory; an example follows:

9.2.4 The out.top File
The fault service daemon annotates the network topology file with the status
of links and nodes (devices) and generates the /var/adm/SPlogs/css/out.top
file.

If the link or node is operational, no annotation is done. Otherwise you may
find something like the following:

s 15 2 tb3 1 0 E01-S17-BH-J8 to Exx-Nxx -4 R: device has been
removed from network - faulty (link has been removed from network - fenced)

SP Switch chip ports that have no connection are usually wrapped. This is
noted as follows:

Fri Jul 24 20:32:25 EDT 1998
hostname is sp5n13.msc.itso.ibm.com
node_number is 13
adapter_config_status = css_ready
Enodes does not exist - using ODM and SDR.
switch_node_number is 12
switch_chip is 4
switch_board is 1
switch_chip_port is 1
IP_switch_netaddr is 192.168.15.13
IP_switch_netmask is 255.255.255.0
IP_switch_ARP_enabled is yes
adapter is TB3
IP_switch_offset is 1
/usr/lpp/ssp/css/ifconfig css0 inet 192.168.15.13 netmask 255.255.255.0 down off
set 1 tb2 arp
/usr/lpp/ssp/css/ifconfig css0 down offset 1
/usr/lpp/ssp/css/fault_service_Worm_RTG_SP -r 12 -b 1 -s 4 -p 1 -a TB3 -t 22
main(): (parent) fork() successful, child PID (daemon PID) = 19224
main(): (parent) parent returns 0, child (daemon) continues ...
main(): (child) signal handlers (SIG_IGN) set up successfully
main(): (child) setsid() successful, daemon process group ID = 19224
/etc/inittab entry specified as "once" for the fault service daemon. \
/usr/lpp/ssp/css/usconfig
rc.switch done - Fri Jul 24 20:32:27 EDT 1998
160 Understanding and Using the SP Switch

s 13 3 s 13 3 E01-S17-BH-J3 to E01-S17-BH-J3 2 L: initialized
(wrap plug is installed)

The possible node error status present in the out.top file is shown in Table 7.

Table 7. SP Switch Device Status

The possible link error status present in the out.top file is shown in Table 8.

Table 8. SP Switch Link Status

9.2.5 The act.top and topology.data File
The fault service daemon creates the act.top.n file when it starts the SP
Switch. The file exists only on the primary node or any node that was at one
time the primary node. However, only the act.top.n file on the current primary
node contains valid information. The "n" in the filename can assume one of
the following values:

<pid> where pid is the process ID of the Estart_sw script run during
switch initialization. You should never see this file since it is
renamed to /var/adm/SPlogs/css/topology.data when the
initialization terminates.

Error Code Description

-4 Device has been removed from network - faulty

-5 Device has been removed from network by the system
administrator

-6 Device has been removed from network - no AUTOJOIN

-7 Device has been removed from network for not responding

-8 Device has been removed from network because of a miswire

-9 Device was not reachable through the network

Error Code Description

-2 Wrap plug is installed

-4 Link has been removed from network or miswire - faulty

-6 Link has been removed from network - no AUTOJOIN

-7 Link has been removed from network - fenced

-8 Link has been removed from network - probable miswire

-9 Link has been removed from network - not connected
SP Switch Problem Determination Tools 161

0 created during a switch initialization spawned by a scan.

1 created during a switch initialization spawned by a primary node
takeover.

2 created during a switch initialization spawned by an unrecoverable
error.

3 created during a switch initialization spawned by an Eunfence.

You should check the files’ timestamp across the nodes to verify the current
one. The information in this file is self-explanatory; an example follows:

9.2.6 The worm.trace File
The /var/adm/SPlogs/css/worm.trace file is written by the fault service
daemon and exists on all nodes. The messages in this file relate to those in
the flt file but give more detail.

On a secondary node the important information to look for is the initialization
of the adapter, as shown:

Entering handleNodeInitPacket.
isTODvalid: 2510-930 Time-Of-Day is now: 80000000944980e8.

The messages tell you the initialization packets were received at the node.
The node is able to talk over the switch.

The worm.trace file on the primary node contains messages tracing the
switch initialization process. For instance, one of the first actions during an
initialization is to clean the receive FIFO, discarding any not yet received
error/status packets.

(i) print_the_time_worm: The date and time = Mon Aug 3 19:10:04 1998
TBSswitchInit: Switch network Initialization Started!
(i) TBSswitchInit: The Primary backup is node with switch node number 4
TBSworm_bfs_phase1: Switch Phase1 network Initialization Started!
syncFifoPh1: Cleaning up the Receive FIFO

Number of active node(s) seen by the Worm:
2
Number_of_linksbad: 0
The primary backup node is:
8
The following switch node(s) are active:
4
8
The topology file used by the Worm:
/etc/SP/expected.top.annotated.2
162 Understanding and Using the SP Switch

In phase one of the switch initialization, the primary node visits all the switch
chips indicated in the topology file and initializes them:

(i) TBSworm_bfs_phase1: Device ID = 100014
route to device 100014 = 00000000 00000000
route from device 100014 = 38000000 00000000
TBSworm_bfs_phase1: Device ID = 100014 has been Visited.
--
Current Device ID: 100014 type: 101 level: 1
--
route to device 100014 = 00000000 00000000
route from device 100014 = 38000000 00000000
TBSworm_bfs_phase1: handleSwDeviceInitResponse() successful

At each visited chip, all known ports connected to a switch chip are checked,
and the expected device id is shown:

TBSworm_bfs_phase1: The current device port = 0
TBSworm_bfs_phase1: The attached device id = 13

Switch chips can be revisited:

TBSworm_bfs_phase1: The current device port = 4
TBSworm_bfs_phase1: The attached device id = 100010
handleSwSvcInitReVisitResponse: rc = 0
TBSworm_bfs_phase1: Device ID = 100014 has been ReVisited.

When a chip or a node is initialized during this phase, the route from the
primary node to the device is shown, as well as the route from the device to
the primary node. The latter is sent to the device in the initialization packet:

route to device 100010 = 8c000000 00000001
route from device 100010 = 43000000 00000001

When a node is initialized, its personality is noted. The primary node has the
personality 1, the primary backup node is 2 and secondary nodes are 3.

personality = 3 db_cmd = 1 error_enable = 0000

During phase two of the switch initialization, the chips are reset and properly
initialized for normal operation:

Phase-2 Switch Initialization Packet for device 100014
--
route = 00000000 00000000
Primary = b0000000 00000000
Secondary = b0000000 00000000
bypass_enable = 0 central_queue_enable = ff edc_frame_length = 1f
mode_bits = 2 receiver_enable = 1f sender_enable = 1f
receiver_error_enable = 1f sender_error_enable = 1f
SP Switch Problem Determination Tools 163

After phase two of the initialization terminates successfully, the Worm
generates the node-to-node routes, and synchronizes the TOD counter on all
components. Finally, the routes are downloaded to the adapter.

DisableNode: rc = 0
TBSworm_bfs_phase2: Switch Phase2 network Initialization Ended!
TBSworm_bfs_phase2: rc = 0
(i) print_the_time_worm: The date and time = Mon Aug 3 19:10:09 1998
TBSswitchInit: Worm Phase2 Initialization Successful.
(i) TBSswitchInit: Processor routes generated.
SetSystemTOD: Started.
(i) print_the_time_worm: The date and time = Mon Aug 3 19:10:09 1998
Num_devices = 11
isTODvalid: 2510-930 Time-Of-Day is now: 80001dda12240d48.
SetSystemTOD: 2510-929 Time-Of-Day synchronization completed successfully.
TBSswitchInit: Switch network Time-Of-Day initialization completed
successfully!
(i) TBSswitchInit: Processor routes down loaded successfully.
TBSswitchInit: Switch network Initialization Ended!

9.2.7 The fs_daemon_print.file File
The file is written by the fault service daemon and exists on every node. It
contains the commands the daemon responded to. Whenever a service
packet or node command is received from the primary node, a time stamp is
logged in the file and the event is noted. In the following case the node
received a service packet from the primary node:

print_the_time: Time = Wed Jul 29 17:36:00 1998
fs_daemon_fsm_main: got request, type = service-msg-received
fs_daemon_fsm_main: packet Service Command (SC) = f9

The initialization information is also written to the file:

route to device 100010 = 8c000000 00000001
route from device 100010 = 43000000 00000001
Initial Personality: 0x0003, Enable error reporting: 0x0000
Device DB Command: 0x0001
Topology File path: /etc/SP/expected.top.annotated.3

All node commands sent by the primary fault service daemon are also logged
in this file. For instance, the following node initialization command is logged:

displayPacket Node Cmd = NODE_INIT:
fs_daemon_fsm_main: packet Node Command (NC) = 1

The command to load the node-to-node routes to the adapter is also logged:

displayPacket: Node Cmd = KLOAD_ROUTES:
164 Understanding and Using the SP Switch

fs_daemon_fsm_main: packet Node Command (NC) = 6

Personality change commands are also noted:

displayPacket Node Cmd = CHANGE_PERSONALITY:
fs_daemon_fsm_main: packet Node Command (NC) = 9
fs_daemon_fsm_main: old daemon personality is 3
fs_daemon_fsm_main: new daemon personality is 2

When the fault service daemon is killed, the following messages are logged in
the file and the switch_responds is turned off in the SDR:

(i) handler_sigTerm: 2510-195 The fault service daemon got a SIGTERM
signal.
fs_daemon_exit: Turning off this nodes switchResponds bits in the SDR

9.2.8 The dtbx.trace File
The dtbx.trace file is found in the /var/adm/SPlogs/css directory on every
node in the SP system. The file contains trace information for the last run of
the css0 adapter diagnostics. When you notice a file creation time on this file
of "Midnight Dec 31 1969" it indicates that this trace was created during the
Power On Self Test (POST), when the node time had not been set yet.

The diagnostics goes through the following phases, which are then traced:

1. Diagnostics setup consists of making sure that ODM is configured
properly, that the device css0 is configured and that diagnostics can get
exclusive use of the device. At that point diagnostics is run.

2. Clock selection can be done from its own internal clock and the external
clock. To complete diagnostics successfully, one of the external clock
sources must be available for test purposes. If these clocks are not
available, diagnostics will still be attempted on the internal clock. However,
even if the diagnostics pass on this internal clock, a failure code is
returned. This is due to the fact that, even though the adapter is okay,
without an external clock source the card can not communicate with the
switch.

Clock selection is as follows:

 • First test whether the internal clock is operational. If it is not,
diagnostics assumes the adapter is bad and no further testing is
attempted.

 • Select the data cable clock. If it is available for testing, proceed with the
test.
SP Switch Problem Determination Tools 165

 • If the data cable clock is not available, select the internal clock and
proceed with the tests. Once tests have completed, mark the
diagnostics as failed because of no external clock available.

3. The Vital Product Data (VPD) is read from the adapter EPROM and written
to the /var/adm/SPlogs/css/dtbx.trace file. The VPD includes the following:
Part Number, EC Level, Serial Number and FRU name, Manufacturer’s
code and the device description.

4. POS testing consists of reading and writing test data to the adapters’
Programmable Option Select (POS) registers. It tests both the functionality
of specific register bits, as well as doing pattern testing where applicable.

5. TBIC FIFO Testing is just as the name implies, functionally testing the
FIFOs found on the TBIC chip.

6. Testing SRAM on the SP Switch adapter is done from the node because of
its small size (512K). There are 10 passes of data patterns written to the
SRAM.

7. TBIC self-test is a resident function of the TBIC chip. To execute the test,
known seed data is scanned into the chip, then self-test is started for a
determined number of passes. When it is complete, the information in the
TBIC scan rings are then scanned out into the scan_out.log file in the
/var/adm/SPlogs/css directory. The RPG and MISR register information is
then extracted from the log and compared to the expected results.

8. The Time-of-Day register on the TBIC chip is tested by setting up the TOD
register to a series of known values, then reading values back from the
register to insure that every bit in the counter increments properly.

9. Interrupts allow the node and the adapter to interrupt each other, as well
as for the adapter to interrupt itself. During the interrupt test each of the
possible interrupts is forced and then checked.

10.Diagnostics are provided to test the DMA functions. The DMA test requires
a DMA kernel extension to be loaded on the node.

Quite certainly, the file of greatest interest is
/var/adm/SPlogs/css/dtbx_failed.trace. This file may or may not exist on a
node. The file contains trace information for the last failed run of the css0
adapter diagnostics. When diagnostics fails, it renames the dtbx.trace to
dtbx_failed.trace.

You should start examining the dtbx_failed.trace file by looking for the
completion status at the bottom of the file. The SRN number at the bottom of
the file should help you locate where in the file to start looking. The 3-digit
166 Understanding and Using the SP Switch

code returned from the diagnostics can be broken down into the following
failure codes:

n?? Broken Component Failure Code

?n? Test Phase Failure Code

??n Test Unit Failure Code

You can use Table 9 to decode the failure code given the indicator n. This
table pertains to TB3 only. The table for MX or PCI is different from that of
TB3.

Table 9. SP Switch Adapter TB3 Diagnostics Failure Codes

9.2.9 The Snapshot Log css.snap.log
The css.snap.log file is found in the /var/adm/SPlogs/css directory and exists
on any SP Switch node. The file is created every time css.snap is run, either
manually or by the fault service daemon. It contains information about what
happened during the snap operation. The file contains the following :

 • Date and time information at the time of the snap
 • Which node it was executed on

Wed Aug 12 17:45:24 EDT 1998
css.snap running on sp5n01

Indicator Component Phase Unit

0 POST test

1 Software POS test Shared test

2 Clock TBIC test Full test

3 POS Register (R/W) TBIC FIFO test Card Wrap test

4 TBIC DMA engine test Cable Wrap test

5 SRAM PPC601 test Error Log analysis

6 PPC601 SRAM test

7 Interrupt Interrupt test

8 TBIC FIFO External clock test

9 DMA engine Packet send test

A Switch network Internal clock

B Diagnostic setup
(TED)
SP Switch Problem Determination Tools 167

 • A list of the contents of the /var/adm/SPlogs/css directory prior to css.snap:

Contents of /var/adm/SPlogs/css before css.snap:total 7189
-rw-r--r-- 1 root system 5363 Aug 12 14:18 flt
-rw-r--r-- 1 root system 1037 Aug 12 14:40
rc.switch.log.previous
-rw-rw-rw- 1 root system 302 Aug 12 15:13 router.log.old
-rw-rw-rw- 1 root system 302 Aug 12 15:13 router.log
-rw-rw-rw- 1 root system 6361 Aug 12 15:13 out.top
-rw-rw-rw- 1 root system 8155 Aug 12 15:13 core
-rw-r--r-- 1 root system 1044 Aug 12 17:43 rc.switch.log
-rw-r--r-- 1 root system 250 Aug 12 17:44 daemon.stdout
-rw-rw-rw- 1 root system 2530 Aug 12 17:44 Ecommands.log
-rw-r--r-- 1 root system 175693 Aug 12 17:45 worm.trace

 • Information on the tar and compress operation performed by css.snap:

tar: cable_miswire*: A file or directory in the path name does not
exist.
tar: dtbx.trace: A file or directory in the path name does not exist.
tar: cssadm.*: A file or directory in the path name does not exist.
a core 16 blocks.
a daemon.stdout 1 blocks.
a daemon.stderr 1 blocks.
a Ecommands.log 5 blocks.
a flt 11 blocks.
a fs_daemon_print.file 2427 blocks.
a rc.switch.log 3 blocks.
a router.log 1 blocks.

 • Information on all running processes on the system at the time the
snap.dump was taken:

"ps -ef" says:
 UID PID PPID C STIME TTY TIME CMD
 root 1 0 14 17:39:59 - 0:01 /etc/init
 root 4224 1 0 17:40:51 - 0:00 /usr/sbin/getty \
/dev/console
 root 4396 1 0 17:40:10 - 0:00 /usr/lib/methods/ssa_daemon

 • Information about the ssp.css software product and updates to it:

"lslpp -h ssp.css" says:
 Fileset Level Action Status Date Time

Path: /usr/lib/objrepos ssp.css 3.1.0.0 COMMIT
COMPLETE 07/24/98 20:06:59
Path: /etc/objrepos ssp.css 3.1.0.0 COMMIT
COMPLETE 07/24/98 20:07:23

 • Information about the microcode of the switch adapter:
168 Understanding and Using the SP Switch

communications adapter information:
serial number -----
xilinx checksum --- 18515
ucode version --- 0x98062304

9.3 SP System Monitoring

Several tools are available on the SP system for system monitoring. This
section gives a brief overview of what is available to monitor the switch. Refer
to the system manuals for further information.

9.3.1 Monitoring the Switch Connection
You can run the SDRGetObjects command on the Control Workstation to verify
switch_responds:

In the example, nodes 1 and 13 are not connected to the SP Switch but
fenced (isolated). Nodes 5 and 9 are connected to the SP Switch.

You can also use SP Perspectives to monitor the switch. Perspectives is
better described in the PSSP: Administration Guide, SA22-7348.

One monitoring option with Perspectives is to use Hardware Perspective. You
may enable the monitoring of the switchResponds condition for nodes,
partitions, or systems. Check on the switchResponds indicator on the
monitor, it should be green for a running switch connection. In the following
figure the middle frame displays the switchResponds indicator in the
Perspective window.

SDRGetObjects switch_responds
node_number switch_responds autojoin isolated adapter_config_status
 1 0 0 1 not_configured
 5 1 1 0 css_ready
 9 1 1 0 css_ready
 13 0 1 1 css_ready
SP Switch Problem Determination Tools 169

Figure 61. Using Hardware Perspective

Equivalent information can be obtained by running spmon -d -G, as described
in 6.6.1, “Verification Commands” on page 106.

You may also use Event Perspective to monitor resources and query resource
variables, including switchResponds. Event Perspective uses the Event
Management EMAPI interface. For instance, you may define an event "Switch
Responds" that monitors the condition SwitchResponds. By requesting to
view the Event Notification Log you can obtain a historic listing of the events
as shown in Figure 62 on page 171.
170 Understanding and Using the SP Switch

Figure 62. Using Event Perspective

9.3.2 Using the Problem Management Subsystem
This section gives two examples of how to use the HA Problem Management
subsystem (pman) to be notified of problems. To find out more about how to
use the pman subsystem, refer to RS/6000 SP Monitoring: Keeping It Alive,
SG24-4873 and to the PSSP: Diagnosis Guide, GA22-7350.

The fault service daemon is essential to keep the SP Switch running. If the
system administrator can be made aware of a daemon failure early, the
availability of the switch may be improved. We show next how to monitor the
fault service daemon (fault_service_Worm_RTG_SP) by running the pmandef
command, as follows:

pmandef -s Monitor_Worm_daemon \
-e ’IBM.PSSP.Prog.xpcount:NodeNum=*; \
ProgName=fault_service_Worm_RTG_SP;UserName=root:X@0==0’ \
-r ’X@0>0’ \
-c /usr/lpp/ssp/bin/notify_event \
-C "/usr/lpp/ssp/bin/notify_event -r" \
-n 0 -U root

When the daemon becomes inoperative on one of the nodes (X@0==0),
/usr/lpp/ssp/bin/notify_event is executed (specified by the -c option). After
that, when it becomes operative again (X@0>0), notify_event -r is executed
(specified by the -C option). The following mail is sent to root at the Control
Workstation by notify_event:

From root Tue Feb 11 15:15:05 1997
Date: Tue, 11 Feb 1997 15:15:04 -0500 (EST)
SP Switch Problem Determination Tools 171

From: root
To: root
Subject: Monitor_Worm_daemon
Monitored situation exists on node 12.
Event Monitor_Worm_daemon reported at Tue Feb 11 15:15:03 1997.

Event Definition

Resource: IBM.PSSP.Prog.xpcount
Instance: UserName=root;ProgName=fault_service_Worm_RTG_SP;NodeNum=12
Condition: X@0==0

Resource Value

Type: sbs
Field0: CurPIDCount=0
Field1: PrevPIDCount=1
Field2: CurPIDList=

The preceding command is part of the /usr/lpp/ssp/install/bin/pmandefaults
script, which registers several useful events. Note that to use Problem
Management you have to set up the /etc/sysctl.pman.acl file as described in
the PSSP: Administration Guide, SA22-7348.

You can also use Problem Management to be notified of changes in
switch_responds. You should use the IBM.PSSP.Response.Switch.state
resource variable, which represents switch_responds. You may use the
following script:

/usr/lpp/ssp/bin/pmandef -s Switch_Responds_Status \
-e ’IBM.PSSP.Response.Switch.state:NodeNum=*:X==0’ \
-r ’X>0’ \
-c /usr/lpp/ssp/bin/notify_event \
-C "/usr/lpp/ssp/bin/notify_event -r" \
-n 0 -U root

Table 10 lists additional Event Management resource variables for the Switch:

Table 10. Event Management Resource Variables for the SP Switch

Event Variable Description

IBM.PSSP.CSS.bcast_rx_ok Number of broadcast packets received

IBM.PSSP.CSS.bcast_tx_ok Number of broadcast packets sent

BM.PSSP.CSS.ibadpackets Number of bad packets received from adapter

IBM.PSSP.CSS.ibytes_dlt Total number of octets received (delta)
172 Understanding and Using the SP Switch

IBM.PSSP.CSS.ibytes_lsw Total number of octets received (lsw bits 0-30)

IBM.PSSP.CSS.ibytes_msw Total number of octets received (msw bits 31-61)

IBM.PSSP.CSS.ierrors Input errors on interface

IBM.PSSP.CSS.ipackets_dlt Packets received on interface (delta)

IBM.PSSP.CSS.ipackets_drop Number of packets not passed up

IBM.PSSP.CSS.ipackets_lsw Packets received on interface (lsw bits 0-30)

IBM.PSSP.CSS.nobufs No buffers available

IBM.PSSP.CSS.obytes_dlt Total number of octets sent (delta)

IBM.PSSP.CSS.obytes_lsw Total number of octets sent (lsw bits 0-30)

IBM.PSSP.CSS.obytes_msw Total number of octets sent (msw bits 31-61)

IBM.PSSP.CSS.oerrors Output errors on interface

IBM.PSSP.CSS.opackets_dlt Packets sent on interface (delta)

IBM.PSSP.CSS.opackets_drop Number of packets not transmitted

IBM.PSSP.CSS.opackets_lsw Packets sent on interface (lsw bits 0-30)

IBM.PSSP.CSS.opackets_msw Packets sent on interface (msw bits 31-61)

IBM.PSSP.CSS.recvintr_dlt Number of receive interrupts (delta)

IBM.PSSP.CSS.recvintr_lsw Number of receive interrupts (lsw bits 0-30)

IBM.PSSP.CSS.recvintr_msw Number of receive interrupts (msw bits 31-61)

IBM.PSSP.CSS.xmitintr_dlt Number of transmit interrupts (delta)

IBM.PSSP.CSS.xmitintr_lsw Number of transmit interrupts (lsw bits 0-30)

IBM.PSSP.CSS.xmitintr_msw Number of transmit interrupts (msw bits 31-61)

IBM.PSSP.CSS.xmitque_cur Sum of driver+adapter xmit queues

IBM.PSSP.CSS.xmitque_max Max transmits ever queued

IBM.PSSP.CSS.xmitque_ovf Number of transmit queue overflows

IBM.PSSP.SP_HW.Node.nodeP
ower

Switch powers up or down

IBM.PSSP.SP_HW.Switch.ps1P
owerGood

Master oscillator failure

Event Variable Description
SP Switch Problem Determination Tools 173

Network status monitoring commands, such as netstat -I, cannot get such
information. These resource variables are helpful in determining the cause of
network problems. Most of them, however, are too detailed to be handled as
events.

Monitoring those resource variables from Perspectives GUI or Performance
Toolbox is described in RS/6000 SP Monitoring: Keeping It Alive, SG24-4873.

9.3.3 SNMP Traps on SP Switch Failures
PSSP provides a Management Information Base (MIB), named ibmSP, to be
used by SNMP-based network management software, like NetView for AIX. A
MIB defines a set of variables or objects that represent the physical and
logical resources of the managed system or agent. The SNMP subagent
responsible for the ibmSP MIB is implemented by the sp_configd daemon.
The ibmSP variables cannot be modified by an SNMP manager.

The ibmSP MIB consists of three groups:

1. ibmSPConfig (1.3.6.1.4.1.2.6.117.1)

This group defines objects containing SP system configuration
information.

2. ibmSPErrlogVars (1.3.6.1.4.1.2.6.117.2)

This group consists of a sequence of objects containing information about
the last error log write that generated an SNMP trap.

3. ibmSPEMVariables (1.3.6.1.4.2.6.117.3)

This group consists of a sequence of objects containing information about
Event Management resource variables.

You can use the AIX error log notification facility to generate SNMP traps
when specific log entries are cut. In addition, you may use the Problem
Management subsystem to generate traps when conditions of interest are
met. Refer to RS/6000 SP Monitoring: Keeping It Alive, SG24-4873 for a
detailed description of setting SNMP traps.

IBM.PSSP.SP_HW.Switch.ps2P
owerGood

Master oscillator failure

IBM.PSSP.SP_HW.Frame.contro
llerResponds

Controller responds goes up or down

Event Variable Description
174 Understanding and Using the SP Switch

9.4 SP Switch Utilities

PSSP provides several utilities for the SP Switch, which are located in the
/usr/lpp/ssp/css directory:

 • rc.switch restarts the fault-service daemon.

rc.switch is automatically run during boot, but can also be run manually.
You should run it if you detect that the fault service daemon is not up on
the node. You should always check the rc.switch.log file and make sure
that the daemon stays up.

 • css.snap collects log and trace information into a compressed tar file,
/var/adm/SPlogs/css/hostname.yymmddHHMMSS.css.snap.tar.Z

This script is called whenever a serious error is detected by the switch
support code (device driver, fault service daemon). It collects all SP
Switch log files into a single package.

The script can be called manually. Its syntax follows:

css.snap [-c | -n | -s]

-c Flushes the adapter cache and prints the result (default)

-n Assumes that the device driver or daemon has flushed the cache

-s Takes a soft snap, which does not dump the adapter state. Used
for temporary errors, when the integrity of the adapter is in doubt, or
when it is not desirable to corrupt the adapter state by the use of
diagnostic routines.

The following table shows the error log entries that automatically take a
snap, as well as the type of snap performed:

Table 11. Error Log Entries that Call css.snap

Error log entries soft/full snap

SP_SW_FIFOOVRFLW_RE soft

SP_SW_RECV_STATE_RE soft

SP_SW_INVALID_RTE_RE soft

SP_SW_NCLL_UNINT_RE soft

SP_SW_PE_INBFIFO_RE soft

SP_SW_PE_ON_DATA_RE soft

SP_SW_PE_ON_NCLL_RE soft

SP_SW_PE_RTE_TBL_RE soft
SP Switch Problem Determination Tools 175

 • fs_dump dumps the fault service kernel extension trace buffer.

The fs_dump utility writes the css fault service kernel extension debug
buffer to standard output. It should be called with the -r flag, otherwise
subsequent updates to the debug buffer would be written to standard
output until fs_dump is interrupted with Ctrl-C. The utility dumps status and
error information for events such as user-space system calls to the fault
service kernel extension.

 • css_dump dumps css the device driver trace buffer.

The css_dump utility writes the css device driver debug buffer to standard
output. Unless the -r flag is specified, subsequent updates to the debug
buffer are also written to standard output until css_dump is interrupted by
Ctrl-C. The utility dumps status and error information for events such as
ioctl calls to the device css0 and adapter error interrupts.

 • read_regs prints the switch adapter’s Programmable Options Selection
(POS) registers and Trail Blazer Interface Chip (TBIC) registers in addition
to the adapter clock status.

The read_regs utility is used to read all registers on the local SP Switch
adapter. Additionally, it returns information about the kernel extension and
the clock source being used by the adapter. The exact output is different
for TB3, MX, or PCI switch adapters. An example output for a TB3 is as
follows:

SP_SW_RECV_STATE_RE soft

SP_SW_SNDLOSTEOP_RE soft

SP_SW_PE_ON_NCLL_RE soft

TB3_CONFIG1_ER full

TB3_LINK_ER full

TB3_PIO_ER soft

TB3_SVC_QUE_FULL_ER full

TB3_THRESHOLD_RE full

Error log entries soft/full snap
176 Understanding and Using the SP Switch

Check the TBIC_STATUS register. If bits 3 and 4 are both set, the switch
clock is driving the adapter (bits are numbered from left to right, starting at
0). The value 0x78 for the first byte indicates that the node is part of the
switch.

You can also execute /usr/lpp/ssp/css/diags/read_tbic -s to get the TBIC
status.

Kernel extension /usr/lpp/ssp/css/fault_service_SP is loaded.

POS REGS : 0 1 2 3 4 5 6 7 31 32 33 34 35 36 37
CONTENTS : 69 8F 9B FE FF 8F 00 FF BF 07 00 FD 0E 71 FE

Clock signal present --- DATA_CABLE clock selected

TBIC Registers:
TIME_OF_DAY : 800009f8 768be320
XMIT_FREE_SPACE Data & Hdr : 00000100 00000040
RECV_FULL_SPACE Data & Hdr : 00000000 00000000
SVC_FULL_SPACE : 00000000
XMIT_FIFO_THRESH_DATA & Hdr : 00000000 00000000
RECV_FIFO_THRESH_DATA & Hdr : 00000000 00000000
INT_ERR error status flags : 00001000 00000000
 STI_RETIMING
INT_MASK : ffffe8c7 ffffffe0
TBIC_CTRL : 0000ec7f ba1fff04
TBIC_STATUS : 78000000
TBIC_DIAG : 00000000
SP Switch Problem Determination Tools 177

178 Understanding and Using the SP Switch

Chapter 10. SP Switch Problem Diagnosis

In this chapter we go over some steps that may help you with problem
determination of the SP Switch hardware and software. Refer to the PSSP:
Diagnosis Guide, GA22-7350, for further information.

The list of recovery examples included in this section is not complete. The
recovery actions suggested might not be successful with the problem you are
experiencing. Nevertheless, this chapter is meant to provide first-aid
information.

10.1 Verification Procedures

The SP Switch software depends on other PSSP components to work
correctly. You should be aware of this dependence when diagnosing switch
problems. You should routinely verify that the following subsystems are
working correctly:

1. Topology Services, that is, the host_responds indicator, which is used by
the E-commands to identify whether nodes are up or down.

2. SDR, which is accessed during all phases of the switch initialization, as
well as during the execution of E-commands and whenever
switch_responds needs to be updated.

3. Kerberos, which is needed to execute the E-commands and distribute the
topology file.

4. Remote commands, which are used by the E-commands and to distribute
the topology file.

Refer to PSSP: Diagnosis Guide, GA22-7350 for information on how to
diagnose those subsystems. Needless to mention, those subsystems rely
heavily on IP connectivity over the administrative Ethernet, which should
always be monitored.

In addition, you should always double-check that your installation procedures
were successfully carried out and that they are still valid. Namely, you should
verify the following:

1. CSS lpp installation, through the CSS_test script, described in 6.6.1,
“Verification Commands” on page 106. This script is an interesting tool
since it not only checks the software installation but also IP connectivity
over the Ethernet and over the switch, as well as Kerberos and remote
commands.
© Copyright IBM Corp. 1999 179

2. The switch topology file, which could not correspond any longer to the
actual switch topology. You should use the Etopology -read command to
read the topology file stored in the SDR. See 6.3, “Specifying the SP
Switch Topology File” on page 93.

3. The clock topology file, as described in 6.4, “Specifying the SP Switch
Clock Distribution Tree” on page 100 and 8.2, “Establishing the SP Switch
Clock” on page 134.

10.2 Diagnosing Procedures

As a general procedure, you should use the following steps when diagnosing
a switch-related problem:

1. View the summary log /var/adm/SPlogs/css/summlog on the Control
Workstation. Carefully examine the entries from the newest to the oldest
until you find the entry reporting the error that seems to be the cause of all
subsequent errors.

2. Note the node that reported the error. It might be the primary node. If not,
you may need to also check the logs on the primary node.

3. Examine the AIX Error Log on the node that reported the error to get more
details. Also check the explanations for some error log entries found in
PSSP: Diagnosis Guide, GA22-7350.

4. If the information in the error logs is not helpful enough, check the
/var/adm/SPlogs/css/flt file on the primary node. Use the timestamp in the
AIX Error Log entry as a starting point to locate the relevant entries. Note
that the format of the timestamps changes from log to log. You may find
additional information on the error messages in PSSP: Messages
Reference, GA22-7352.

5. If you have not pinned down the problem yet, you might try to investigate
other log files, specially fs_daemon_print.file. Otherwise you should
contact the IBM Support Center.

You should not only check the summlog file when you discover a switch
problem, but use that file as a monitoring tool. Many switch faults can leave
no trace other than an error message on the log files. For example, the failure
of a switch-to-switch cable can go undetected since its absence may not
necessarily take some nodes down, but an error log entry will be generated
by the primary node when failing to initialize that link during an
under-the-covers switch initialization.

It is also a good idea to run css.snap on the node that reported the error (and
possibly on the primary node if it is a different node) as soon as possible after
the error, so you do not risk losing the log files at the time of the error, or to
180 Understanding and Using the SP Switch

have them growing with information irrelevant to the problem in question.
Remember that many errors automatically take a snap. You should view the
summlog file to check whether a snap was already taken or not.

10.2.1 Estart Fails
In this section we go over some basic steps to diagnose problems with Estart.
To solve uncommon or hard problems, a good understanding of the steps
taken by the script is extremely helpful. Refer to 7.3, “Starting the SP Switch”
on page 119 for detailed information on Estart.

Estart may exit with an error right away if some of the initial checks fail. A
common problem occurs when the oncoming primary node is not reachable
or is fenced. If you need to start the switch right away, you may try using the
Eprimary command to select another oncoming primary node and then issuing
another Estart. You may also try to solve the problem in your oncoming
primary node, since it could be a problem that is affecting all nodes. Refer to
10.2.2, “Node Is off the Switch” on page 182 on how to diagnose a node
problem.

The fault service daemon may fail or time out during the switch initialization. If
this happens, you should check the end of the
/var/adm/SPlogs/css/fs_daemon_print.file file on the oncoming primary node
for the cause of the error. In PSSP: Diagnosis Guide, GA22-7350, there is a
table with possible causes and actions that could be taken. If the information
there does not help you in solving the problem, you may try to look at the
/var/adm/SPlogs/css/worm.trace file on the oncoming primary node to trace
the activities of the fault service daemon. In C.1, “SP Switch Worm Return
Codes” on page 253 you may find the list of error codes returned by the fault
service daemon during the switch initialization.

Estart may finish normally but with some nodes or links not initialized. You
should initially check the /var/adm/SPlogs/css/out.top file on the primary node
for a more detailed explanation of why the nodes or links were not initialized.
If the problem is in a single node, you should try to diagnose the node as
described in 10.2.2, “Node Is off the Switch” on page 182. If the problem is on
a single switch-to-switch connection, you may have a cable problem. If
several nodes or links were not initialized, you should try to find a pattern that
could indicate a common problem. For instance, if all links of two switch chips
do not initialize, you may have an intermittent cable problem between those
two chips. You may also have a cable miswire, in which case the
/var/adm/SPlogs/css/cable_miswire file is created with additional information.
Refer to PSSP: Diagnosis Guide, GA22-7350 for additional information on the
analysis of the out.top log file.
SP Switch Problem Diagnosis 181

Another possible reason for a node failing to join the switch is a corrupted or
absent topology file. If there is a failure in the distribution of the topology file,
you should check the /var/adm/SPlogs/css/dist_topology.log file on the
primary node for detailed information on the failure. You may have a Kerberos
problem, for example. A more subtle problem would occur if the topology file
on a node gets corrupted or becomes lost. As described in 7.3.1, “Distributing
the Topology File” on page 120, an Estart does not always distribute the
topology file, causing the node with the lost or corrupted topology file to fail to
initialize because of an error during the Route Table generation. The flt file on
the node would contain the reason for the failure (see C.2, “Return Codes
from Route Table Generation” on page 255).

10.2.2 Node Is off the Switch
There are many reasons for a node to be off the switch. Arguably, the first
check to be made is whether the fault service daemon is running on the node
or not. In case it is not running, you may try to restart it by calling the
rc.switch script. But, of course, that may not solve the problem that caused
the daemon to exit in the first place.

Whenever the fault service daemon is not running on a node, you should first
check the AIX error log. Almost all error situations will cause the fault service
daemon to make an error log entry. Refer to PSSP: Diagnosis Guide,
GA22-7350, for the table with an explanation and recovery actions for most of
the daemon’s error log entries.

An error log entry is not generated when there is a failure in the rc.switch
script that bars the fault service daemon from running. You should check the
/var/adm/SPlogs/css/rc.switch.log file to get more details. One possible
reason for a failure in rc.switch is an error during the configuration of the SP
Switch adapter as described in 7.1, “Configuration Method of the SP Switch
Adapter” on page 111. You may check the adapter_config_status attribute of
the switch_responds SDR object for the error status returned by the
configuration method. An explanation and some actions that could be taken
are found in PSSP: Diagnosis Guide, GA22-7350.

When you are having problems on a node, you should also check whether the
adapter is being driven by the switch’s synchronous clock or not. You may use
the read_tbic -s utility, which should return a value with bits 3 and 4 set.
Typical values for TB3 are 1C000000, 1E000000, and 78000000. If not, you
should initially try to restart the fault service daemon. If that does not work,
your next step would be to Eclock the frame or the system, as described in
8.2, “Establishing the SP Switch Clock” on page 134. If running Eclock is not
effective, you may be experiencing a cable problem.
182 Understanding and Using the SP Switch

When permanent errors on a node are detected by the local fault service
daemon or by the primary fault service daemon, the node is fenced. Thus,
simply unfencing a fenced node may not solve the problem that caused the
node to be fenced in the first place. You should view the AIX error log on the
failed node as well as on the primary node for the reason of the failure. If you
decide to unfence the node you may use the Eunfence command, or use the
autounfence feature of PSSP 3.1 and just reset the isolated attribute of the
switch_responds object:

SDRChangeAttrValues switch_responds node_number==<node> isolated=0

The latter command also works even when the switch is down, especially
when you want to unfence the oncoming primary node.

10.2.3 Eunfence Fails
The Eunfence command can fail for several reasons. Before the actual
unfence, the topology file is distributed to all nodes being unfenced, and that
could be a source of problems. The fault service daemon has to be running
on the nodes for the unfence to work, otherwise the unfence will finish with a
timeout error.

You may also get a timeout, even with the fault service daemon running, if
there is an adapter problem that prevents the primary node from talking to the
fault service daemon on the node being unfenced. That may happen after a
cable was changed, for example. In this case you should restart the daemon
through rc.switch. If it does not work, you might try unconfiguring and
reconfiguring the adapter as described in 7.1, “Configuration Method of the
SP Switch Adapter” on page 111, checking for any errors during the
reconfiguration, and then restarting the daemon. Your last resort would be to
reboot the node.

10.2.4 Other E-command Failures
The general error determination procedure for any E-command that fails
follows:

 • Note the error message returned by the command.
 • Cross reference the message number with the information in PSSP:

Messages Reference, GA22-7352.
 • View details on the execution of the E-command in the

/var/adm/SPlogs/css/flt file on the primary node.
SP Switch Problem Diagnosis 183

10.3 Examples of Recovery Procedures

In this section we show some switch-related problems and how to proceed to
solve them.

10.3.1 Estart Problem One
When you run the Estart command on the Control Workstation, the following
problem occurs:

Check the AIX error log on the failing node for possible fault service daemon
failures:

Estart
Estart: 0028-029 Fault service worm not up on oncoming primary backup node, cannot \
Estart : sp5n01.
184 Understanding and Using the SP Switch

The first (last in time) AIX error log, with label HPS_FAULT6_ER, indicates that the
daemon has terminated. The previous switch-related error message
describes the possible cause of the fault service daemon’s termination. It
indicates that the daemon got a SIGTERM signal that killed it. The scripts
Eclock and rc.switch kill the daemon with that signal, but automatically restart
the daemon. Since there are no later log entries that indicate a problem in

LABEL: HPS_FAULT6_ER
IDENTIFIER: 89F34F83

Date/Time: Wed Aug 12 14:18:52
Sequence Number: 877
Machine Id: 00010011A400
Node Id: sp5n01
Class: S
Type: PERM
Resource Name: Worm

Description
Switch Fault Service Daemon Terminated
............

LABEL: SP_SW_SIGTERM_ER
IDENTIFIER: 5A38E3B0

Date/Time: Wed Aug 12 14:18:52
Sequence Number: 876
Machine Id: 00010011A400
Node Id: sp5n01
Class: S
Type: PERM
Resource Name: Worm

Description
Switch daemon received SIGTERM

Probable Causes
Another process sent a SIGTERM

User Causes
Operator ran Eclock
Operator ran rc.switch on node and switch daemon was restarted
User program sent SIGTERM

 Recommended Actions
 Run rc.switch to restart switch daemon

Detail Data
Software ID String
LPP=PSSP,Fn=fs_daemon_init.c,SID=1.33,L#=819,
PID of process sending SIGTERM
 23120
Name of process sending SIGTERM

SP Switch Problem Diagnosis 185

one of those scripts, the daemon may have been killed inadvertently by the
system operator or another privileged user.

The log entry suggests to restart the fault service daemon through rc.switch:

Running Estart again should initialize the switch.

10.3.2 Estart Problem Two
After an Estart, not all nodes are initialized. Check the out.top file on the
primary node to decode any error messages for nodes you expect to be
connected to the switch. In this example we expected nodes 7 and 8 to be
connected and found the following errors:

Check the /var/adm/SPlogs/css/cable_miswire file on the primary node to
confirm the information:

/usr/lpp/ssp/css/rc.switch
"adapter/mca/tb3"
ps -ef | grep Worm
 root 14014 14550 4 10:54:15 pts/0 0:00 grep Worm
 root 15914 1 0 10:53:35 - 0:00 \
/usr/lpp/ssp/css/fault_service_Worm_RTG_SP -r 8 -b 1 -s 4 -p 3 -a TB3 -t 22

s 16 2 tb3 6 0 E01-S17-BH-J24 to E01-N7 -8 R: device has been removed \
from network because of a miswire (link has been removed from network - probable \
miswire)
s 16 3 tb3 7 0 E01-S17-BH-J23 to E01-N8 -8 R: device has been removed \
from network because of a miswire (link has been removed from network - probable \
miswire)
186 Understanding and Using the SP Switch

You should now check the cables to nodes 7 and 8 (jacks 24 and 23,
respectively), which could be switched. This problem could also have
occurred because the nodes were placed in the wrong slots during
maintenance.

10.3.3 Eunfence Problem
Node 8 is off the switch and you try to unfence it:

Now we check the dist_topology.log file on the primary node:

pg /var/adm/SPlogs/css/cable_miswire
ProcessNodeMiswire: 2510-920 Node mis-wire detected, Please check node cabling.
__
(i) print_the_time_miswire: The date and time = Thu Aug 13 11:24:29 1998
ProcessNodeMiswire: 2510-745 Node Mis-wire detected for Device id - Expected = 6 \
Actual = 7.
ProcessNodeMiswire: 2510-794 Node Mis-wire detected for switch number - Expected = 1 \
Actual = 1.
ProcessNodeMiswire: 2510-795 Node Mis-wire detected for switch chip - Expected = 6 \
Actual = 6.
ProcessNodeMiswire: 2510-796 Node Mis-wire detected for switch port - Expected = 2 \
Actual = 2.
ProcessNodeMiswire: Connection line: s 16 2 tb3 6 0 E01-S17-BH-J24 to \
E01-N7

ProcessNodeMiswire: 2510-745 Node Mis-wire detected for Device id - Expected = 7 \
Actual = 6.
ProcessNodeMiswire: 2510-794 Node Mis-wire detected for switch number - Expected = 1 \
Actual = 1.
ProcessNodeMiswire: 2510-795 Node Mis-wire detected for switch chip - Expected = 6 \
Actual = 6.
ProcessNodeMiswire: 2510-796 Node Mis-wire detected for switch port - Expected = 3 \
Actual = 3.
ProcessNodeMiswire: Connection line: s 16 3 tb3 7 0 E01-S17-BH-J23 to \
E01-N8

Eunfence 8
dist_to_bootservers: 0028-178 Received errors in distribution of topology file from \
bootserver to at least one node.
See /var/adm/SPlogs/css/dist_topology.log on primary node for details.
Unable to unfence the following nodes:
sp3n08.msc.itso.ibm.com No topology
SP Switch Problem Diagnosis 187

There is a Kerberos problem on the node. You should correct it using the
procedures described in PSSP: Diagnosis Guide, GA22-7350. For example,
you could start checking the Kerberos configuration files on the node:

The file /etc/krb-srvtab is missing. To recreate it you should use the
setup_server’s create_krb_files wrapper:

The file was created on the Control Workstation with the name
sp3n08-new-srvtab on the /tftpboot directory. You must copy it to the node as
/etc/krb-srvtab. You should use FTP, since remote commands are not
functioning.

10.3.4 Node Off the Switch
When you run Estart on the Control Workstation, not all of the 13 nodes are
initialized:

cat dist_topology.log
Eunfence: Tue Nov 3 12:58:26 EST 1998

sp3en0: sp3en0: krshd: Kerberos Authentication Failed.
sp3en0: sp3en0: /usr/lpp/ssp/rcmd/bin/rcp: 0041-004 Kerberos rcmd failed: rcmd \
protocol failure.
sp3en0: sp3en0: rshd: 0826-813 Permission is denied.
sp3en0: pexscr: 5025-509 sp3en0 rsh had exit code 1
sp3en0: sp3n08.msc.itso.ibm.com: krshd: Kerberos Authentication Failed.
sp3en0: sp3n08.msc.itso.ibm.com: spk4rsh: 0041-004 Kerberos rcmd failed: rcmd \
protocol failure.
sp3en0: sp3n08.msc.itso.ibm.com: rshd: 0826-813 Permission is denied.
sp3en0: dsh: 5025-509 sp3n08.msc.itso.ibm.com rsh had exit code 1

ls /etc/krb*
/etc/krb.conf /etc/krb.realms

spbootins -r customize -s no -l 8
create_krb_files
create_krb_files: tftpaccess.ctl file and client srvtab files created/updated
on server node 0.
ls /tftpboot/*srvtab
/tftpboot/sp3n08-new-srvtab
spbootins -r disk -s no -l 8
188 Understanding and Using the SP Switch

Through the SDR we can see that node 8 was not initialized:

Look for the entry in the /var/adm/SPlogs/css/summlog file on the Control
Workstation to find the error entry for the failing node:

Being the only relevant error log entry, label HPS_FAULT6_ER only indicates that
the fault service daemon on the node terminated with an error. There are also
no helpful log entries on the primary node. We now check the flt file on the
primary node:

Estart
Estart: 0028-061 Estart is being issued to the primary node: sp3n01.
Switch initialization started on sp3n01.
Initialized 12 node(s).
Switch initialization completed.

SDRGetObjects switch_responds node_number==8
node_number switch_responds autojoin isolated adapter_config_status
 8 0 1 1 css_ready

tail /var/adm/SPlogs/css/summlog
110311211998 sp3n15 N sp3en0 49 SP_SW_RSGN_BKUP_RE
110311211998 sp3n08 N sp3en0 51 HPS_FAULT6_ER
110311221998 sp3n01 N sp3en0 51 SP_SW_UNINI_NODE_RE
110311221998 sp3n01 N sp3en0 52 SP_SW_UNINI_LINK_RE
SP Switch Problem Diagnosis 189

As marked on the screen, the switch initialization was retried, quite certainly
because of the Error/Status packets received during a broadcast. We also
notice that device 7 (node 8) was removed from the switch during the retry. To
get more detail on the broadcast error we check the fs_daemon_print.file:

(i) 11/03/98 11:21:29 : 2510-744 Estart initiated.
(i) 11/03/98 11:21:29 : The date and time = Tue Nov 3 11:21:29 1998
(n) 11/03/98 11:21:29 : Switch and Adapter Error bits found during switch \
initialization.
(i) 11/03/98 11:21:29 : Device ID = 3
(i) 11/03/98 11:21:29 : 2510-918 Interrupt Error Register = 0000010000000000.
(n) 11/03/98 11:21:30 : 2510-826 Device ID 15 un-initialized during switch \
initialization. Disabling the device.
(n) 11/03/98 11:21:30 : 2510-826 Device ID 2 un-initialized during switch \
initialization. Disabling the device.
(n) 11/03/98 11:21:30 : 2510-826 Device ID 1 un-initialized during switch \
initialization. Disabling the device.
(n) 11/03/98 11:21:47 : 2510-606 A switch Error/Status was service packet received \
during a broadcast operation.
(n) 11/03/98 11:21:47 : 2510-606 A switch Error/Status was service packet received \
during a broadcast operation.
(n) 11/03/98 11:21:47 : 2510-606 A switch Error/Status was service packet received \
during a broadcast operation.
(n) 11/03/98 11:21:47 : 2510-606 A switch Error/Status was service packet received
during a broadcast operation.
(i) 11/03/98 11:21:53 : 2510-824 Switch initialization will be executed.
(i) 11/03/98 11:21:53 : The date and time = Tue Nov 3 11:21:53 1998
(n) 11/03/98 11:21:53 : Switch and Adapter Error bits found during switch \
initialization.
(i) 11/03/98 11:21:53 : Device ID = 100016
(i) 11/03/98 11:21:53 : 2510-793 First Error Capture Register = 000008.
(i) 11/03/98 11:21:53 : 2510-741 Second Error Capture Registers = 00000000 00000010 \
00000000 00000000 00000010 000000
(i) 11/03/98 11:21:53 : Device ID = 3
(i) 11/03/98 11:21:53 : 2510-918 Interrupt Error Register = 0000010000000000.
(n) 11/03/98 11:21:54 : 2510-826 Device ID 15 un-initialized during switch \
initialization. Disabling the device.
(n) 11/03/98 11:21:54 : 2510-826 Device ID 7 un-initialized during switch \
initialization. Disabling the device.
(n) 11/03/98 11:21:54 : 2510-826 Device ID 2 un-initialized during switch \
initialization. Disabling the device.
(n) 11/03/98 11:21:54 : 2510-826 Device ID 1 un-initialized during switch \
initialization. Disabling the device.
(i) 11/03/98 11:21:58 : The Primary backup is node sp3n15.msc.itso.ibm.com
(i) 11/03/98 11:22:00 : Switch initialization completed successfully!
190 Understanding and Using the SP Switch

As expected, the error occurred on node 8. It happened while it was building
its version of out.top. We now check the /var/adm/SPlogs/css/daemon.stdout
file on the failing node:

This is most likely an indication for a corrupted topology file on the node. One
possible solution is to force the redistribution of the topology file on the next
Estart, accomplished by:

Now run rc.switch to restart the fault service daemon on the failing node.
Then run Estart on the Control Workstation to distribute the correct topology
file to all nodes and start the switch.

(n) fs_daemon_bcast_DBupdates: 2510-606 A switch Error/Status was service packet \
received during a broadcast operation.

displayPacket: Packet type = TBS_SVC_CMD_ERROR_STATUS:
 Command: 0xfa Flag: 0x00 Chip ID: 0x0010 Seq no: 0xa5
 First Error Capture Reg: 0x000008
 Second Error Capture Reg: 0x00000000 00000010 00000000 00000000 00000010 \
000000

fs_daemon_bcast_DBupdates:11/03/98 11:21:53 : No ACK received from switch node \
number 7
fs_daemon_bcast_DBupdates:11/03/98 11:21:53 : Returning -2
init_on_startup_msg: Timed out on ACKs in fs_d_bcast_DBupdates()

tail /var/adm/SPlogs/css/daemon.stdout
ERROR: deviceConnect: id 100015 port 7 connected more than once

ERROR: buildDeviceDatabase: device-connect error, line 75

SDRChangeAttrValues Switch_partition num_nodes_success=0
SP Switch Problem Diagnosis 191

192 Understanding and Using the SP Switch

Part 4. Application and Server Tuning for the SP Switch
© Copyright IBM Corp. 1999 193

194 Understanding and Using the SP Switch

Chapter 11. SP Switch-Specific Application and Server Tuning

In this chapter we describe the challenge of tuning the SP system and its
applications for maximum possible performance. Applications running on the
SP system with radically different network traffic characteristics can cause
tuning problems. Where an application inherits its network tunables is key to
optimal performance.

11.1 General Tuning Recommendations

When tuning or monitoring the performance of the SP system you need to
make sure that you know what you change, when you change it, when you
collected any data, and what the data you collect is for. Not using change
control, or having time stamps on performance data, makes tuning the SP
system and its switch a very difficult task. We highly recommend that a
change control system be used to track and monitor any changes to the
tunables on any part of the SP system, including changes to the Control
Workstation and the nodes.

You need to take into account the total system picture when you are tuning
large configurations. For example, if you are tuning a partitioned SP system,
subsystems that span several system partitions (such as the SP system
Ethernet) can cause changes within more than the partition being tuned.

When setting tunables, take into account the total system, not necessarily
only those nodes being used for the application or subsystem being tuned.

The approach to tuning the SP system is, in some situations, the opposite of
how you would tune an AIX workstation. In tuning an AIX workstation or
server, the most common approach is to tune the machine to handle the
amount of traffic or services requested of it. In the case of a file server, the
server is tuned to the maximum amount of traffic it can receive. In general,
the bottleneck in a high-end server is the capacity of the network through
which services are requested.

In the SP system, the SP Switch is faster than any other network available.
With the non-blocking nature of the switch, the number of requests and
volume of data that may be requested of a node can far exceed the node’s
capacity. To properly handle this situation, the volume of services requested
of a server or destination node must be managed. Instead of trying to tune a
node for the maximum amount of services requested, each of the nodes
requesting services needs to manage the volume of requests made of
another node. In other words, you should consider reducing the volume of
© Copyright IBM Corp. 1999 195

requests at the client, rather than increase the capacity of the server. It is
very easy on large SP system configurations to require more services than
the most powerful node can currently deliver.

11.1.1 Scheduling Administrative Tasks
Some administrative tasks, such as collecting and clearing log files, cause
network traffic that could affect system performance. You should consider
scheduling such tasks for off-shift hours.

11.2 Tuning Considerations

Tuning the network interfaces is critical to maintaining peak throughput for
network traffic. When tuning an SP switch adapter, there are two things to
tune: the SP switch buffer pools and the ARP cache. Additional tuning is done
using the communication protocols tunables.

The SP usually requires that tunable settings be changed from the default
values in order the achieve optimal performance of the entire system.
Network options can be changed with the no command. However, where to
set these tunable values is very important. If they are not set in the correct
places, subsequent rebooting of the nodes, or other changes, can cause
tunable settings to change or be lost.

All dynamically tunable values (those that take affect immediately) setting
should be set in the /tftpboot/tuning.cust script on each node. There is also
a copy of the file in this same directory on the Control Workstation. Tunables
changed using the no, nfso, or vmtune command can be included in this file.

There are several reasons why the /tftpboot/tuning.cust file should be used
rather than /etc/rc.net for dynamically tunable settings. If you cause errors in
/etc/rc.net, you can render the node unusable, requiring a reinstall of the
node. If you partially cause errors in /etc/rc.net, getting to the node through
the console connection from the Control Workstation can take several
minutes or even more than one hour. This is because parts of the initialization
of the node try to access remote nodes or the Control Workstation. Because
/etc/rc.net is defective, each attempt to get remote data takes 9 minutes to
timeout and fail.

If you cause errors in tuning.cust, at least the console connection will work,
enabling you to log in through the Control Workstation and fix the bad tunable
settings.
196 Understanding and Using the SP Switch

If you decide to create your own /etc/inittab entry to call a file with the tuning
settings, future releases of PSSP will require a /tftpboot/tuning.cust set of
tunables to be run to override your local modified settings.
/tftpboot/tuning.cust is run from /etc/rc.sp, so it will always be run on a
reboot. /tftpboot/tuning.cust includes a stop and start of inetd, which is
required for all daemons spawned by inetd to inherit the SP-specific tuning
settings. Using the sample /tftpboot/tuning.cust settings selected as a part
of the install, the SP nodes will at least function well enough to get up and
running for the type of environment selected. See 11.5, “SP Environment
Tuning for Performance” on page 217 for specific environment tuning
suggestions.

If the system has nodes that require different tuning settings, we recommend
that a copy of the each settings be saved on the Control Workstation. Then,
when nodes with a specific tuning setting are installed, that version of
tuning.cust is moved to the /tftpboot directory on the node from the Control
Workstation.

11.2.1 SP Switch Options
When you tune the switch buffer pools, you need to take several factors into
consideration in deciding what the optimal settings should be. Along with
performance problems, insufficient buffer space could also cause TCP
connections to stop transferring data and then time out after a set amount of
time because nothing comes ready on the sockets. The switch buffer pools
are used to stage the data portion of IP packets for the switch. However, the
allocation and sizes utilized from the pools can cause buffer starvation
problems.

As discussed in 4.6.2, “Send Data Flow” on page 61, the send pool and
receive pool are separate buffer pools, one for outgoing data (send pool) and
one for incoming data (receive pool). The amount of data that will fit in an
mbuf is up to 228 bytes, depending on what type of TCP options are set.
When an IP packet is passed to the switch interface, if the data can fit in an
mbuf (that is, the data is at most 228 bytes long), an mbuf is used from the
mbuf pool, and no send buffer pool space is allocated for the packet. If,
however, the data is too large to fit in an mbuf, buffer pool space will be
allocated.

Use the lsattr command to view the current settings for the SP Switch
pools:

lsattr -El css0
SP Switch-Specific Application and Server Tuning 197

The switch buffer pools are allocated in the kernel at initialization of the switch
adapter. They are not dynamic for the SP Switch. This may change for future
technology. Make the changes for the switch buffer pool size to the ODM
database only. Then reboot the node for the changes to become effective.

Use the chgcss command to apply configuration changes to the SP Switch
adapter in the ODM database. The command is located in the
/usr/lpp/ssp/css directory. Configuration changes are later applied to the
device when it is configured at system reboot. You must have root privilege to
run this command.

chgcss -l css0 -a rpoolsize=1048576 -a spoolsize=1048576

The sizes of the switch buffer pools allocated by the device driver start at
4096 bytes and increase to 65536 bytes. All allocation sizes in between are a
power of 2 value. This means that the buffer sizes allocated from the pools
are:

Bytes Size in K
40964
81928
1638416
3267832
6553664

If the size of the data being sent is just slightly larger than one of these sizes,
the buffer allocated from the pool is the next size up. This can cause a 50%
efficiency in use of the buffer pools. More than half of the pool can go unused
in bad circumstances. When assembling a TCP/IP packet, one mbuf from the

lsattr -El css0
bus_mem_addr 0x04000000 Bus memory address False
int_level 0xb Bus interrupt level False
int_priority 3 Interrupt priority False
dma_lvl 9 DMA arbitration level False
spoolsize 524288 Size of IP send buffer True
rpoolsize 524288 Size of IP receive buffer True
adapter_status css_ready Configuration status False

When allocating the receive pool and send pool, realize that this space is
pinned kernel space in physical memory. This takes away space from user
applications and is particularly important in small memory nodes.

Important
198 Understanding and Using the SP Switch

IP mbuf pool is always used to assemble the packet header information in
addition to any data buffers from the send pool. If the mbuf pool size is too
small, and the system runs out of mbufs, the packet is dropped. The mbuf
pool is used globally for all IP traffic, and the size is set using the thewall
tunable in the no command.

When sending 4 KB of data over the switch, an mbuf from the mbuf pool is
used as well as one 4 KB send pool buffer for the data. If the amount of data
being sent is less than 228 or so bytes, no buffer from the send pool is
allocated because there is space in the mbuf used for assembling the
headers to stage the data. However, if sending 256 bytes of data, you will end
up using one mbuf for the IP headers, and one 4 KB send pool buffer for the
data. This is the worst case, in which you are wasting 15/16 of the buffer
space in the send pool. These same scenarios apply to the receive pool when
a packet is received on a node.

The key for peak efficiency of the send pool and receive pool buffers is to
send messages that are at or just below the buffer sizes allocated from the
pools, or less than 228 bytes.

The appropriate values for the tunables are unique for each installation.
Therefore, a sizing exercise like the one described here is necessary. When
trying to determine the appropriate receive pool and send pool sizes, you
need to get a profile of the message sizes that are being sent by all
applications on a node. This will help determine how the receive pool and
send pool will be allocated, in total number of buffers. At a given pool size,
you will get 16 times as many buffers allocated out of the pool for 4 KB
messages than for 64 KB messages. However, the total pool size in both
cases is identical.

Once you have a profile of the packet or buffer sizes used by all applications
using the switch on a node, you can then determine roughly how many of
each size send pool or receive pool buffers will be needed. This then
determines your initial receive pool and send pool settings. A node that
stages a mix of packet sizes, of which 25% are smaller than 228 bytes, 50%
are 5 KB and 25% are 32 KB, if the number of packets projected to be staged
at any one time is 1024, then the send pool initial setting should be 12582912
or 12 megabytes. None of the small packets need any send pool space, the
5 KB packets each use 8 KB out of the send pool and need about 4 MB of
space, and the 32 KB packets need about 8 MB of send pool space. The total
estimated pool size needed is 12 MB.

Another way to determine the maximum pool size is to determine the
maximum number of active socket connections at any one time. If you then
SP Switch-Specific Application and Server Tuning 199

multiply by the smaller of the tcp_sendspace or tcp_recvspace size for the
connections, that gives you the maximum amount of pool space in bytes.
However, if the buffer sizes that the connections use are not aligned against
pool allocation sizes, the actual requirements will be higher.

The allocations from the pools are transient. The actual number of buffers
used at any time is very dynamic due to the large volume of packets the
switch can handle. The above calculation is a conservative estimate in that it
assumes all packets will be staged at once. In reality, as packets are being
staged into the pool, other packets are being drained out, so the effective
number of active buffers should be less.

The sizes allocated from the pool are not fixed. At any point in time, the
device driver will divide the pool into the sizes needed for the switch traffic. If
there is free space in the send pool, and smaller buffers than the current
allocation has available are needed, then the device driver will carve out the
small buffer needed for the current packet. As soon as the buffer is released,
it is joined back with the rest of the 64 KB buffer it came from. The buffer pool
manager tries to return to 64 KB block allocations as often as possible to
maintain high bandwidth at all times. If the pool were fragmented, and a large
buffer needed 64 KB, then there may not be 64 KB of contiguous space
available in the pool. Such circumstances would degrade performance for the
large packets.
200 Understanding and Using the SP Switch

Figure 63. Switch Buffer Pool Allocation

If all buffer space is used, then the current packet is dropped, and TCP/IP or
the application will need to resend it, expecting that some of the buffer space
was freed up in the mean time. This is the same way that the transmit queues
are managed for Ethernet, Token Ring and FDDI adapters. If these adapters
are sent more packets than their queues can handle, the adapter drops the
packet.

Currently, the upper limit for the send pool and receive pool is 16 MB for each.
This means you can get a maximum of 4096 4 KB or 256 64 KB buffers each
for sending and receiving data.

To verify that the switch buffer pools are exceeding the threshold, run the
vdidl3 -i command to check the send pool:

64 KB

32 KB 16 KB 8 KB 4 KB

vdidl3 -i|pg
get ifbp info...

send pool: anchor@=0x0a265200 start@=0x0a300000 tags@=0x0552bc00
bkt allocd free success fail split comb freed
 12 0 0 2981828 0 8019979 0 0
 13 0 0 617083 0 1604613 0 0
 14 0 0 7022485 0 14810213 0 0
 15 0 0 234483 0 493880 0 0
 16 0 32 10448 0 0 0 0
SP Switch-Specific Application and Server Tuning 201

Where:

bkt Lists the pool allocation in powers of 2 for the line it is on. The line
starting with 12 means 2 to the 12th or 4 KB allocations and the
line starting with 16 means 2 to the 16th or 64 KB allocations.

allocd Lists the current allocations at the time the command was run, for
each of the size allocations in the first column. This is an
instantaneous value and, therefore, can increase and decrease
between successive executions of the command.

free Lists the number of buffers of each allocation that are allocated
and unused at the time the command was run. In the above
example, there are 32 64 KB allocations free for use. This is a
snapshot value and, therefore, can increase and decrease
between successive executions of the command.

success Increments every time an allocation of the given size succeeded.
This counter accumulates and, therefore, shows the number of
successes since the adapter was last initialized.

fail Increments every time an allocation is not available for the size
requested. This counter accumulates and, therefore, shows the
number of fails since the adapter was last initialized.

split Indicates how many times the allocation size was extracted from
the pool by carving the size needed from a larger allocation in the
pool. This counter accumulates and, therefore, shows the number
of splits since the adapter was last initialized.

comb Currently not used.

freed Currently not used.

For the receive pool, check the AIX error log for "mbuf pool threshold
exceeded" entries by running errpt -a|grep ENOBUF. If you experience
slow network traffic or ENOBUF errors in the error log, it indicates the system
is running out of receive buffer pool space.

Use netstat -m to check for "request for memory denied" errors for small
(less than 228 bytes) packets. Increase the size of thewall in the no options:

/usr/sbin/no -o thewall=131072

For large packets (greater than 228 bytes) use the vdidl3 -i command to
check if the failed count is non-zero. Increase the switch buffer pools using
the chgcss command and reboot the system:

/usr/lpp/ssp/css/chgcss -l css0 -a rpoolsize=1048576 -a spoolsize=1048576
202 Understanding and Using the SP Switch

When tuning the receive and send pools, it is important to understand the
network traffic expected. As shown, if the size of the buffers for the
applications is not ideal, much of the send and receive pool will be wasted.
Such circumstances can cause the need for a larger receive and send pool
because of inefficient usage.

If there are a small number of active sockets, then there is usually enough
receive and send pool space that can be allocated. In systems where a node
has a large number of sockets opened across the switch, it is very easy to run
out of send pool space when all sockets transmit at once. For example, 300
sockets each sending 33 KB of data will far exceed the 16 MB limit for the
send pool. Or, 1100 sockets each sending four 1 KB packets will also exceed
the maximum limit.

On the receive side of a parallel or client/server implementation, where one
node acts as a collector for several other nodes, the receive pool runs into the
same problem. Four nodes each with 600 sockets, each sending two 1 KB
packets to one node, will exceed the receive pool limit, but those same
sockets each sending twice as much data, 4 KB in one 4 KB packet, will
succeed!

Another situation where a node combination can cause buffer exhaustion is
when a faster node sends data to a slower node. A P2SC node can generate
traffic several times faster than an older POWER2 node. So, if the P2SC node
sends packets as fast as it can, the slower POWER2 node can run out of
receive pool space. The receive pool space can fill because the slower
processor cannot drain the receive pool as fast as the P2SC node can fill it
from across the switch. One way to prevent overrunning the receiving node is
to make sure that the aggregate TCP window for all active sockets is less
than the receive pool size. See additional information regarding the TCP
window mechanism in IBM AIX Versions 3.2 and 4 Performance Tuning
Guide, SC23-2365.

The other situation that aggravates exhaustion of the pools is the use of SMP
nodes. Only one CPU is used to manage the send or receive data streams
over the switch. However, each of the other CPUs in the SMP node is
capable of generating switch traffic. As the number of CPUs increases, so
does the aggregate volume of TCP/IP traffic that can be generated. We
suggest that for SMP nodes, the send pool size be scaled to the number of
processors when compared to a single CPU node setting.

For applications, changing the size of messages or buffers sent is key to
prevent exhausting the switch buffer pools. Most applications tuned for peak
efficiency for slower networks, such as Ethernet, will try and send 1 KB
SP Switch-Specific Application and Server Tuning 203

messages, causing problems on the switch. Increasing the buffer size for the
SP not only reduces the requirements on the receive and send pool, but it can
also improve performance. TCP/IP transfers data faster over the switch when
you use larger packets.

The key to tuning the buffer pools on the SP is to understand the number of
packets using the switch pools at any one time and the size of the data being
sent. The receive and send pool sizes need to be set so there are enough
buffers allocated to handle the size and number of packets being sent or
received. Applications that do not efficiently use full buffers from the pool
aggravate the pool size needed or can cause exhaustion of the pools.

11.2.2 AIX Tuning Option
There are a small number of no options that are not dynamically tunable (that
is, they are load-time attriutes) and need to be changed in the /etc/rc.net file.
These tunables are for ARP cache tuning and setting the number of network
interface structures per interface. They are:

arptab_nb
arptab_bsize
arpqsize
ifsize

The first level network protocol is the Address Resolution Protocol (ARP),
which dynamically translates Internet addresses into the unique hardware
MAC addresses on local area networks. These addresses are kept in a series
of entries in buckets. If a MAC address is not in the ARP cache when
connecting to a remote adapter, an ARP broadcast is sent to get the MAC
address from the remote host and store the information in the local ARP
cache. If the cache is too small, then the ARP cache thrashes, loading up
MAC addresses, causing network performance to suffer.

SP systems with more than 128 nodes can suffer from ARP thrashing.
Though the SP Switch does not include a MAC address, the system uses the
switch number as MAC address and stores it in the ARP cache:

sp2a03.gsi.de (140.181.80.3) at 0:2:0:0:0:0
sp2a04.gsi.de (140.181.80.4) at 0:3:0:0:0:0
sp2a07.gsi.de (140.181.80.7) at 0:6:0:0:0:0
sp2b05.gsi.de (140.181.80.21) at 0:14:0:0:0:0
sp2b07.gsi.de (140.181.80.23) at 0:16:0:0:0:0

The ARP cache is controlled by the no command. The default tunables
allocate 175 ARP cache entries. The tunable no options are:
204 Understanding and Using the SP Switch

arpqsize Specifies the maximum number of packets to queue while
waiting for ARP responses. The default value is 1. This attribute
is supported by Ethernet, 802.3, Token Ring and FDDI
interfaces.

arptab_bsiz Specifies Address Resolution Protocol (ARP) table bucket size.
The default value is 7.

arptab_nb Specifies the number of ARP table buckets. The default value is
25.

arpt_killc Specifies the time in minutes before a complete ARP entry will
be deleted. The default value is 20 minutes.

The total available ARP entries are calculated using:

 arptab_nb * arptab_bsiz

For fast lookups, a large number of small buckets is ideal. For memory
efficiency, a small number of medium buckets is best. Having too many
buckets wastes memory. The following is the recommended way to calculate
the values for the ARP cache sizing. For systems with more than 64 nodes,
round the number of nodes down to the next power of 2, and use that for
arptab_nb.

Table 12 shows the values for systems with from 1 to 512 nodes.

Table 12. arptab_nb Tuning

To set the number of entries for each ARP bucket, set the arptab_bsize to
double the number of adapter interfaces on a node.

Table 13. arptab_bsize Tuning

Number of Nodes arptab_nb value

1-64 25 (default)

65-128 64

129-256 128

257-512 256

Number of adapter interfaces arptab_bsize value

1-3 7 (default)

4 and more 8 (2 times the number of interfaces)
SP Switch-Specific Application and Server Tuning 205

Display the number of entries in the ARP cache and compare the result with
the maximum number you set with the no options:

You can see if any of your buckets are full by pinging an IP address on a local
subnet that is not in the ARP cache and is not being used. See how long the
ARP entry stays in the cache. If it lasts for a few minutes, that particular
bucket is not a problem. If it disappears quickly, that bucket is doing some
thrashing. Carefully choosing the IP addresses to ping will let you monitor
different buckets. Make sure the ping actually made the round trip before
timing the ARP cache entry.

11.2.3 IP Tuning Parameters
A problem that often occurs on the SP system is that an application runs very
slowly when using the SP switch, while performance is significantly better on
an Ethernet or FDDI network interface. This problem is sometimes caused by
the Nagle Algorithm (used by TCP/IP) interacting with the delayed ACK
(acknowledgment) timer.

A 200 msec delay in sending data over a switch can be caused by either the
Nagle Algorithm being invoked or by the application writing buffers so that
only one packet is sent over the interface and the delayed ACK timer causing
a 200 msec delay on the acknowledgment.

The effect of the Nagle Algorithm or delayed ACK timer is easy to see if only
one socket connection is running. If you check the packet rate over the switch,
you should see an average of 5 packets per second. Typically, a throughput
rate of 150 to 300 KB per second transfer rate is reported by an application.
To check the packet rate over the switch and total IP packet rates per second,
use the following command:

arp -a|wc -l
 23
206 Understanding and Using the SP Switch

This listing shows how many packets per second go through the switch
interface. The following suggestions will help to avoid the Nagle Algorithm:

 • If you are running an application and do not have access to the source
code, use the no command to increase the TCP window. This may not
always be effective because increasing the tcp_sendspace and
tcp_recvspace size on the sending and receiving nodes may cause other
negative effects on the SP system or to other applications running on the
system. Make sure that you set rfc1323 to 1 if the window size exceeds
65536.

 • Changing the MTU of the switch will move the window size and buffer size
combination. When writing 32 KB buffers to a TCP connection, if the
TCP/IP window is 65536, only 5 packets per second are transmitted. If you
change the MTU of the switch interface to 32768, there is no delay in
transmitting a 32768 buffer because it is the same size as the segment
size of the switch. However, reducing the MTU of the switch to 32768
degrades the peak TCP/IP throughput slightly. Reducing the MTU even
further degrades the peak throughput even more.

 • From within an application, you can change the TCP window size on the
socket by setting a different size using the SO_SNDBUF and
SO_RCVBUF settings on the socket. For good performance across a
switch, we suggest that both SO_SNDBUF and SO_RCVBUF be set to at
least 327680 on both the client and server nodes. You need to set both
sides since TCP uses the lowest common size to determine the actual
TCP window.

If you set the SO_SNDBUF and SO_RCVBUF sizes above 65536, you
also need to set TCP_RFC1323 on the socket unless the no options
already have it set. Setting TCP_RFC1323 to 1 will take advantage of
window sizes greater than 65536. You also want to ensure that the system
setting for sb_max is at least 655360 or sb_max will reduce the effective
values for SO_SNDBUF and SO_RCVBUF. You cannot change the
sb_max setting from within an application. You must use the no command.

netstat -I css0 1
 input (css0) output input (Total) output
 packets errs packets errs colls packets errs packets errs colls
171158001 8 141967087 0 0 181988911 8 152981357 0 0
 5 0 3 0 0 6 0 4 0 0
 3 0 2 0 0 4 0 3 0 0
 6 0 3 0 0 7 0 4 0 0
 3 0 2 0 0 4 0 4 0 0
 7 0 2 0 0 9 0 3 0 0
 4 0 2 0 0 5 0 3 0 0
SP Switch-Specific Application and Server Tuning 207

 • Set TCP_NODELAY on the socket of the sending side to turn off the Nagle
Algorithm. All data sent will go immediately, no matter what the data size.
However, if the application sends very small buffers, you will significantly
increase the total number of packets on the network.

One common problem that causes unexpected Nagle behavior is setting
tcp_sendspace and tcp_recvspace to a high number, and forgetting to set
rfc1323 to 1 on all nodes. In addition, setting tcp_sendspace and
tcp_recvspace large on one node and not the other will cause Nagle to occur.
The TCP window size is negotiated as the least common denominator of the
sending node’s tcp_sendspace and receiving node’s tcp_recvspace.

On systems where a node is talking to several other nodes, it is harder to see
the Nagle effect. In this case, the only way to detect it is to examine iptrace
output to extract a single socket's traffic. What can happen is that if one node
is talking to two nodes, each connection can be seeing the Nagle effect, and
the packet rate over the switch is 10 packets per second. If one node is
talking to five nodes, the packet rate can be 25 packets per second but the
aggregate switch traffic is 1.5 MB/s. This rate exceeds the throughput on a
slow Ethernet network, but is well below what the switch can handle.

11.2.4 MPI Tuning
In the Message Passing Interface (MPI) there are two tunables that affect the
SP Switch performance. They are the message size MP_EAGER_LIMIT and
the maximum amount of memory staging per message per task.

Set the MP_EAGER_LIMIT, which the rendezvous methodology will use. Size
it accordingly to ensure that at least 32 messages can be outstanding
between two tasks in user space. Table 14 shows the eager_limit values
relative to the number of tasks:

Table 14. MP_EAGER_LIMIT

Tasks MP_EAGER_LIMIT

1-16 4096

17-32 2048

Changes to the network options do not affect existing socket connections.
Child processes inherit default socket settings from parent processes.

Important
208 Understanding and Using the SP Switch

The MP_BUFFER_MEM sets the maximum amount of memory for staging
per task (see Table 15):

Table 15. MP_BUFFER_MEM

11.3 Files Used on the SP for Tuning

There is no one way to tune an SP system that will work in every type of
application configuration or environment. The following sections describe the
characteristics of several of the more common environments found on the SP
and how initial tuning settings are determined. They also describe the way
that the system utilizes these optimal tunables to benefit the types of network
traffic generated.

One difficulty in tuning networks is that different mixes of traffic, and the way
applications utilize the network, can work against each other. A set of
tunables that benefits a single stream point-to-point large data transfer can
cause severe problems for a parallel application. In many cases you cannot
optimize for two types of traffic using the no tunables. In addition, if your
configuration has several types of network media (Token ring, Ethernet, FDDI
and ATM), it is not always possible to optimize for all network interfaces.

The sections that follow address settings for a single application environment.
Other options to optimize tuning can be handled by setting groups of nodes
into different settings, or using the applications themselves to set network
tuning for their own socket connection.

33-64 1024

65-128 512

Protocol Default size

User Space 64 MB

MPI over IP 2.67 MB

Tasks MP_EAGER_LIMIT

Using MPI over IP gives you a much smaller default memory buffer size. It
can be increased by setting a larger value through your shell variables.

 Important
SP Switch-Specific Application and Server Tuning 209

11.3.1 Select an IBM-Supplied Alternate Tuning File
When a node is installed, migrated, or customized (set to customize and
rebooted), and that node’s boot/install server does not have a
/tftpboot/tuning.cust file, a default file of system performance tuning variable
settings in /usr/lpp/ssp/install/config/tuning.default is copied to
/tftpboot/tuning.cust on that node. You can override these values by
following one of the methods described in the following list.

IBM supplies three alternate tuning files which contain initial performance
tuning parameters for three different SP environments:

/usr/lpp/ssp/install/config/tuning.commercial contains initial performance
tuning parameters for a typical commercial environment.

/usr/lpp/ssp/install/config/tuning.development contains initial performance
tuning parameters for a typical interactive and or development
environment.

/usr/lpp/ssp/install/config/tuning.scientific contains initial performance tuning
parameters for a typical engineering and or scientific environment.

Use SMIT or issue the cptune command. When you select one of these files,
it is copied to /tftpboot/tuning.cust on the Control Workstation and is
propagated from there to each node in the system when it is installed,
migrated, or customized. Each node inherits its tuning file from its boot/install
server. Nodes that have as their boot/install server another node (other than
the Control Workstation) obtain their tuning.cust file from that server node,
so it is necessary to propagate the file to the server node before attempting to
propagate it to the client node. The settings in the /tftpboot/tuning.cust file
are maintained across a boot of the node.

11.3.2 Create and Select Your Own Alternate Tuning File
The following steps enable you to create your own customized set of network
tunable values and have them propagated throughout the nodes in your
system. These values are propagated to each node’s /tftpboot/tuning.cust
file from the node’s boot/install server when the node is installed, migrated, or
customized and are maintained across the boot of the node.

 • On the Control Workstation, create the file /tftpboot/tuning.cust. You can
choose to begin with a copy of the file located in
/usr/lpp/ssp/samples/tuning.cust that contains a template of performance
tuning settings have been commented out. Or you may prefer to begin with
a copy of one of the IBM-supplied alternate tuning files.

 • Select the tunable values that are best for your system. Refer to Table 16
for more information on tuning values.
210 Understanding and Using the SP Switch

 • Edit the /tftpboot/tuning.cust file by ensuring that the appropriate lines
are uncommented and that the tunable values have been properly set.

Using SMIT:

Select SP System Management
Select SP Cluster Management
Select The desired tuning file

Table 16. Initial Values for SP Switch Performance at the Expense of Ethernet

If you have additional network adapters in your nodes and you want to
optimize the network performance for these adapters, use the initial
suggested settings shown in Table 17:

Table 17. Initial Values for Other Adapter Types

Tunable Ethernet Ethernet no
SPS

Ethernet SP
Thin node
with SPS

Ethernet SP
Wide, High
and SMP
nodes with
SPS

sb_max 163840 442368 475236 655360

rfc1323 1 1 1 1

thewall 16384 16384 16384 16384

subnetsarelocal 1 1 1 1

tcp_sendspace 65536 221184 237568 262144

tcp_recvspace 65536 221184 237568 262144

udp_sendspace 32768 65536 65536 65536

udp_recvspace 65536 221184 237568 655360

TCP_mssdflt 1448 1448 1448 varies

Tunable Token-Ring FDDI ATM

sb_max 655360 1302528 655360

rfc1323 1 1 1

thewall 16384 16384 16384

subnetsarelocal 1 1 1

tcp_sendspace 262144 196608 262144

tcp_recvspace 262144 196608 262144
SP Switch-Specific Application and Server Tuning 211

As you set up the network tunables for your environment, it is important to
tune for the type of data transfer your site has. If you transfer mainly large
blocks of data or buffer sizes of 4 KB or greater, the tunable settings can be
different than when you send files or buffers of less than 228 bytes.

Once you have updated tuning.cust, continue installing the nodes. After the
nodes are installed or customized, on all subsequent boots, the tunable
values in tuning.cust will be automatically set on the nodes. Note that each of
the supplied network tuning parameter files, including the default tuning
parameter file, contains the command /usr/sbin/no -o ipforwarding=1.
IBM suggests that on non-gateway nodes, you change this command to read
/usr/sbin/no -o ipforwarding=0. After a non-gateway node has been
installed, migrated, or customized, you can make this change in the
/tftpboot/tuning.cust file on that node.

For the latest performance and tuning information, refer to the RS/6000 Web
site at

http://www.rs6000.ibm.com/support/sp/perf

11.4 Common SP Application Tuning for Performance

This section provides information for some common applications in an SP
environment.

11.4.1 Server Tuning
The server environment usually is a node serving a lot of data to one or many
other nodes on an SP. It can also be serving data to machines outside the SP
through gateway nodes. If a server node in an SP potentially serves hundreds
of requests or connections, tcp_sendspace and tcp_recvspace need to be
small. This prevents a large number of large data requests from consuming
the entire switch and the TCP/IP buffer pools.

In systems where there is one server, and the rest of the nodes run an
application that needs larger tcp_sendspace and tcp_recvspace, it is
acceptable to use different settings on the appropriate nodes. In this
situation, the nodes talking to each other use large TCP windows for peak
performance, and when talking to the server use small windows. The TCP

udp_sendspace 65536 65536 65536

udp_recvspace 655360 655360 655360

Tunable Token-Ring FDDI ATM
212 Understanding and Using the SP Switch

window is set using the least common denominator of the tcp_sendspace and
tcp_recvspace values.

The following list provides network tunable settings designed as initial values
for server environments. You need to change these values on each of the
installed nodes. To temporarily change these values, use the no command. If
you want them to be preserved across booting the nodes, we suggest that
you change the tuning.cust script on each node. Details on how to change
the script are found in 11.2, “Tuning Considerations” on page 196.

thewall =16384
sb_max =131072
subnetsarelocal =1
ipforwarding =1
tcp_sendspace =65536
tcp_recvspace =65536
udp_sendspace =65536
udp_recvspace =655360
rfc1323 =1
tcp_mssdflt =1448
tcp_pmtu_discover (new in AIX 4.2.1) =1
udp_pmtu_discover (new in AIX 4.2.1) =1

These settings are only initial suggestions. Start with them and realize that
you may need to change them. These initial values are derived by expecting
network traffic from lots of connections. To prevent exhaustion of the TCP/IP
buffer pools or the switch buffer pools, tcp_sendspace, tcp_recvspace and
sb_max are reduced. If the total number of active requests from the server is
small, these values may be increased to allow more buffer area per
connection. This increase will help improve performance for small numbers of
connections as long as the aggregate TCP window space does not exceed
other buffer areas.

11.4.2 Tuning for FTP
When tuning the SP Switch network for FTP performance, keep in mind that
in most cases the bottleneck is not the network but the disk access rate. Tune
AIX for memory file caching. You can use the suggestions in the
/usr/lpp/ssp/install/config/tuning.scientific script as initial performance tuning
parameter for FTP service. FTP opens a single connection to the server and
can require a large amount of data. The initial settings in the tuning.scientific
script set up the network tunables so that a single connection or a few
connections can get the full SP Switch bandwidth. Refer to 11.5.2, “Tuning for
Scientific and Technical Environments” on page 218.
SP Switch-Specific Application and Server Tuning 213

11.4.3 Tuning for NFS
Three aspects of NFS that are particularly challenging to tune for large SP
system configurations are:

 • The number of concurrent NFS requests to an NFS server
 • The number of NFS daemons (nfsd and biod) running
 • The NFS socket size

List the current NFS settings on a node with the nfso -a command. The
parameters vary depending on the NFS version you are running on the AIX
system. The example was taken from NFS V3:

The first problem related to NFS that we generally see in large SP system
configurations occurs when a single node is acting as the NFS server for a
large number of nodes. In this scenario, the aggregate number of NFS
requests can overwhelm the NFS socket or nfsd daemons on the server, or
enough daemons cannot be configured.

When NFS is configured on a node, AIX, by default, configures 8 nfsd and 6
biod daemons. The nfsd handle NFS requests on the server. The biod
daemons handle block I/O, primarily in NFS writes from the client node.

For the server configuration, nfsd daemons are the primary concern. If you
have a 64-node configuration and configured one NFS server for the other 63
nodes, and if all 63 client nodes made an NFS request at the same time, you
will need at least 63 nfsd daemons on the server. If you had only 8 nfsd
daemons, as in the default configuration, then 55 NFS requests would have to

nfso -a
portcheck= 0
udpchecksum= 1
nfs_socketsize= 1300000
nfs_tcp_socketsize= 60000
nfs_setattr_error= 0
nfs_gather_threshold= 4096
nfs_repeat_messages= 0
nfs_udp_duplicate_cache_size= 1000
nfs_tcp_duplicate_cache_size= 1000
nfs_server_base_priority= 0
nfs_dynamic_retrans= 1
nfs_iopace_pages= 32
nfs_max_connections= 0
nfs_max_threads= 96
nfs_use_reserved_ports= 0
nfs_device_specific_bufs= 1
nfs_server_clread= 1
nfs_max_write_size= 0
nfs_max_read_size= 0
214 Understanding and Using the SP Switch

wait and they could time out. Obviously, average NFS response time will be
very slow.

However, there is a limit on how many nfsd daemons you can configure
before the amount of processing on behalf of the NFS traffic overwhelms the
server. Generally, when you configure more than 100 nfsd daemons you start
to see NFS performance degradation, depending on the characteristics of the
NFS traffic. The size of the requests, the mix of NFS operations, and the
number of processes on each node that generates NFS requests influence
the amount of NFS performance degradation. Examine nfsstat command
output to check indications that you are generating too much NFS traffic to a
server.

If you see RPC timeouts or RPC retransmits when checking on the client
nodes, then you probably are overwhelming the current number of nfsd
daemons or nfs_socketsize size on the server.

Client rpc:
calls badcalls retrans badxid timeout wait newcred
3595281 695 0 665 690 0 0

Determining the number of biod daemons to configure on the client node is a
bit complicated. The biod daemons are used when writing to an NFS server
from a client node. Typically you would configure enough biod daemons on a
client node for the NFS write traffic that you expect. However, NFS has a limit
of 6 biod daemons on a client node per NFS mounted file system. If you have
only one process on a client node writing to a single file system on the server,
there is no reason to increase the number of biod daemons. And, if you have

Server nfs:
calls badcalls public_v2 public_v3
1944188 0 0 0
Version 2: (1939153 calls)
null getattr setattr root lookup readlink read
271345 13% 164811 8% 3021 0% 0 0% 723431 37% 269332 13% 399288 20%
wrcache write create remove rename link symlink
0 0% 30071 1% 1924 0% 1725 0% 871 0% 23 0% 4 0%
mkdir rmdir readdir statfs
10 0% 3 0% 63445 3% 9849 0%
Version 3: (5035 calls)
null getattr setattr lookup access readlink read
57 1% 424 8% 0 0% 1175 23% 74 1% 8 0% 19 0%
write create mkdir symlink mknod remove rmdir
3180 63% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
rename link readdir readdir+ fsstat fsinfo pathconf
0 0% 0 0% 12 0% 17 0% 27 0% 34 0% 0 0%
commit
8 0%
SP Switch-Specific Application and Server Tuning 215

only one remote mounted NFS file system on each client, you can use only 6
biod daemons no matter how many processes are writing to the file system.

The limitation to 6 biod’s on a client node per NFS mounted file system is
imposed by NFS. In NFS Version 2.0, all NFS writes use a fully synchronous
4 KB write model. When you write to an NFS-mounted file system, you can
send only 4 KB at a time from the client to the server. If you have only one I/O
outstanding at a time, this is very slow. In a fully synchronous model the data
must be written on the disk at the server before the client can send the next
4 KB block. To speed this up, NFS allows staging 6 requests at the client per
file system, but no more. Given the time it takes to write a block on disk in
AIX, one block at a time is very slow.

If you are using AIX 4.2.1 or higher, on the server and client, you have the
ability of running NFS Version 3.0. This version provides improved
performance by using larger I/O request sizes. In NFS V2.0, the read request
size was 8 KB and the write size 4 KB. In NFS V3.0, you can increase the
read and write request size to 32 KB each. This larger I/O request size
improves performance due to the larger amount of data per request. In
addition, NFS V3.0 has the ability to use asynchronous write. This improves
write performance to close to read performance. However, there is a very
slight risk that data can be lost if the server crashes.

If there is more than one NFS-mounted file system on your client nodes, you
can configure up to 6 biod daemons per file system. If the number of biod’s
gets too high, performance will suffer in the same way as when too many nfsd
daemons are configured on the server. Again, a general rule is that more than
100 biod’s will start to degrade performance.

In general, the same rules discussed in the previous section apply for nfsds
on the client node when the client is also used as NFS server. However, we
do not suggest that you use the same number of nfsd daemons on the client
nodes acting as servers when a large number of nodes all use the same
server (16 clients to 1 server, for example). If all nodes have 16 biod
daemons, each nfsd daemon on the server nodes can potentially be sent 16
NFS requests. In the situation where you use nodes as server and client,
monitor nfsstat on both the client and server nodes to look for RPC
timeouts and retransmits.

If you already have a lot of nfsd daemons configured on the server, the best
solution is to split the NFS server duties across several nodes, and keep the
potential number of concurrent NFS requests below 100. As a general
guideline, configuring up to 100 nfsd’s on a server usually works well on the
SP system.
216 Understanding and Using the SP Switch

The other parameters that need addressing are the nfs_socketsize and
nfs_tcp_socketsize parameters. These settings can be found using the nfso
command. The current default values of 60000 are much too small for use on
an SP system. These parameters specify the amount of space available in
the NFS queue of pending requests. This queue is eventually read, and the
requests handed off to an nfsd. In the queue, write requests include the data
to be written so that enough space must be allocated to handle concurrent
write requests to a server. If this size is too small, then the client node will
record NFS timeouts and retries as requests are dropped at the server.

In NFS V2.0 you only have the nfs_socketsize. In NFS V3.0, since it now
includes the ability to use TCP as the transport mechanism between client
and server, you must make sure that both these parameters are set to the
correct size. To determine the appropriate size on the server, you need to
calculate the maximum number of servers that will be writing to the server at
the same time, times the number of file systems they will be writing to, times
6, which is the maximum number of biod’s per remote file system. By taking
this number, and multiplying it by 4K for NFS V2.0 or 32K for NFS V3.0, you
can estimate the queue space needed.

If the sizes needed for nfs_socketsize and nfs_tcp_socketsize are very large,
you might want to reduce the number of biod’s per mounted file system from
the client nodes. If you do, then you can reduce the size previously
determined by using the smaller number of biod’s per file system rather than
the value of 6 .

For more detailed information regarding tuning NFS, refer to the IBM AIX
Versions 3.2 and 4 Performance Tuning Guide, SC23-2365, and the AIX
System Management Guide: Communications and Networks, GC23-2487.

11.5 SP Environment Tuning for Performance

This section provides some tuning considerations for typical SP
environments.

11.5.1 Tuning for Development Environments
The typical development environment on the SP consists of several users all
developing an application or running small tests on a system. Tuning such an
environment is usually based on having reasonable TCP/IP performance to
prevent exhaustion of the buffer pools. It is important that aggregate
requirements from several developers do not exhaust system resources.
SP Switch-Specific Application and Server Tuning 217

The following table provides network tunable settings designed as initial
values for development user environments. To temporarily change these
values on each node, use the command:

dsh -w node "/usr/sbin/no -o option=value"

To preserve these values across booting of the nodes, we suggest that you
change the tuning.cust script on each node. These settings are only initial
suggestions. Start with them and realize you may need to change them.

thewall =16384
sb_max =1310720
subnetsarelocal =1
ipforwarding =1
tcp_sendspace =65536
tcp_recvspace =65536
udp_sendspace =32768
udp_recvspace =65536
rfc1323 =1
tcp_mssdflt =1448
tcp_pmtu_discover (new in AIX 4.2.1) =1
udp_pmtu_discover (new in AIX 4.2.1) =1

These initial values are derived by expecting the network traffic to be small
packets with lots of socket connections. tcp_sendspace and tcp_recvspace
are kept small so that a single socket connection cannot use up lots of
network buffer space, causing buffer space starvation. It is also set so that
high performance for an individual socket connection is not expected.
However, in aggregate, if lots of sockets are active at any one time, the overall
resources will enable high aggregate throughput over the switch.

11.5.2 Tuning for Scientific and Technical Environments
The typical scientific and technical environment usually has only a few
network sockets active at any one time, but can require large amounts of
data. The information below addresses setting up the network tunables so
that a single socket connection or a few connections can get the full SP
Switch bandwidth. In doing this, however, you can cause problems on small
packet networks like Ethernet and Token Ring. This is the trade-off that has to
be made to get peak performance out of the SP system.

To achieve peak data transfer across a switch using TCP/IP, you need to
increase the no tunables that affect buffer sizes, queue sizes, and the TCP/IP
window. The tunables to adjust are:

 thewall
218 Understanding and Using the SP Switch

 sb_max
 tcp_sendspace
 tcp_recvspace
 rfc1323

To get the best TCP/IP transfer rate, you need to size the TCP/IP window
large enough to keep data streaming across the SP Switch without stopping
the IP stream. The switch has a Maximum Transmission Unit (MTU) of 65520
bytes. This is the largest buffer of data that it can send. When using TCP/IP,
TCP will send as many buffers as it can until the total data sent without
acknowledgment from the receiver reaches the tcp_sendspace value. We
found that having at least 4 buffers as the size of the window, allows TCP/IP
to reach high transfer rates. Faster nodes can require a greater number of
buffers. However, if you set tcp_sendspace and tcp_recvspace to 655360, it
can hurt the performance of the other network adapters connected to the
node. This can cause adapter queue overflows. The settings below are only
initial suggestions. Start with them and realize you may need to change them.

 thewall =16384
 sb_max =1310720
 subnetsarelocal =1
 ipforwarding =1
 tcp_sendspace =655360
 tcp_recvspace =655360
 udp_sendspace =65536
 udp_recvspace =655360
 rfc1323 =1
 tcp_mssdflt =(Varies depending on other network types.)
 tcp_pmtu_discover (new in AIX 4.2.1) =1
 udp_pmtu_discover (new in AIX 4.2.1) =1

11.5.3 Tuning for Commercial and Database Environments
The following table provides network tunable settings designed as initial
values for commercial and database user environments. These initial settings
are derived from the fact that commercial and database type applications
generally have lots of network connections between nodes. For environments
with lots of active connections, tcp_sendspace and tcp_recvspace need to be
adjusted so that the aggregate demand across all connections does not
exceed the available buffer space for the SP switch. Commercial and
database environments where only a few connections are active may be able
to increase the tcp_sendspace and tcp_recvspace sizes to get better per
connection performance over the switch.
SP Switch-Specific Application and Server Tuning 219

You need to change these values on each of the installed nodes. To
temporarily change these values, use the no command. If you want these
values to be preserved across booting the nodes, we suggest that you
change the tuning.cust script on each node. Details on how to change the
script are found in 11.3, “Files Used on the SP for Tuning” on page 209.
These settings are only initial suggestions. Start with them and realize that
you may need to change them.

 thewall =16384
 sb_max =1310720
 subnetsarelocal =1
 ipforwarding =1
 tcp_sendspace =221184
 tcp_recvspace =221184
 udp_sendspace =65536
 udp_recvspace =655360
 rfc1323 =1
 tcp_mssdflt =1448
 tcp_pmtu_discover (new in AIX 4.2.1) =1
 udp_pmtu_discover (new in AIX 4.2.1) =1

These initial values are derived by expecting the network traffic to be small
packets with lots of socket connections. However, when running a parallel
database product, you want to be able to get as much SP switch throughput
to a single connection as you can without causing problems on other network
adapters. The settings are also designed to enable a single socket to be able
to send to an Ethernet adapter without causing adapter queue overruns. In
addition, tcp_sendspace and tcp_recvspace are large enough to get most of
the switch bandwidth at database size packets.

If other applications are run on the same node that have vastly different
network characteristics, such as ADSM, or are a data mining type application
that tends to use few sockets, these settings will not provide peak
performance. In these cases, the TCP window settings may have to be
increased. Conflicts with the settings needed by ADSM can be resolved by
having ADSM do its own socket-level tuning. See 11.6.1, “Tuning for the
ADSTAR Distributed Storage Manager (ADSM)” on page 221 for more
information.

11.6 Application-Specific Tuning

To get peak performance over the SP Switch for various applications is to
tune application sockets using tunable files. Set reasonable defaults based on
generic application network traffic characteristics and provide a socket tuning
220 Understanding and Using the SP Switch

input file so the users can select their own optimized settings. In general,
however, the best place to look for tuning information is the product
documentation itself.

11.6.1 Tuning for the ADSTAR Distributed Storage Manager (ADSM)
When running ADSM on the SP system, the performance of a backup or
restore is affected by several tunable settings. However, the tunables and
their settings differ depending on the backup destination or restore source.
The following section lists the settings for initially trying to run the ADSM
server on an SP system node. Because ADSM is not always the only
application running on a client node or server, some of these values may not
be reasonable in your environment.

The following are the no tunable values that will achieve the best ADSM
performance on the SP ADSM server node:

thewall =16384
sb_max =1310270
rfc1323 =1
tcp_mssdflt =32768

If you already have a larger value for thewall, you need to keep it.

The following are the entries in the /usr/lpp/adsm/bin/dsmserv.opt file on the
SP system ADSM server node:

TCPWindowsize =256
TCPBuffsize =32
Txnbyte =25600
tcpnodelay =Y

11.6.2 Tuning for Virtual Shared Disk (VSD) Servers
The following information is excerpted from VSD tuning information in the
VSD manuals. It serves as a quick reference to tuning and performance of
VSD, but does not address everything about configuration, setup etc. If you
need more information, refer to PSSP: Managing Shared Disks, SA22-7349.

The processing capability required for VSD service is a function of the
application I/O access patterns, the node model, the type of disk, and the disk
connection. If you plan to run time-critical applications on a VSD server,
remember that servicing disk requests from other nodes might conflict with
the demands of these applications.
SP Switch-Specific Application and Server Tuning 221

Make sure that you have sufficient resources to run the VSD program
efficiently. This includes enough buddy buffers of sufficient size to match your
file system block size, as well as sufficient rpoolsize and spoolsize blocks in
the communications subsystem.

Buddy Buffers:

The VSD server node uses buddy buffers to temporarily store data for I/O
operations originating at a non-server node. Buddy buffers are used only
when a shortage in the switch buffer pool occurs, or on certain networks. In
contrast to the data in the cache buffer, the data in a buddy buffer is purged
immediately after the I/O operation completes.

Buddy buffer space is allocated in powers of 2. If an I/O request size is not a
power of 2, the smallest power of two that is larger than the request is
allocated. For example, for a request size of 24 KB, 32 KB is allocated on the
server.

If you do not plan to create any GPFS file system with a block size larger than
16KB, two or three buddy buffers of 16 KB each on VSD server nodes should
suffice. Create one buddy buffer of 16 KB on each non-server node.

If you do plan to create a GPFS file system with a block size larger than 16
KB, one buddy buffer equal to the largest block size used will do for
non-server nodes, but the number of buddy buffers on VSD server nodes
should be sufficient to handle the maximum number of disk I/Os expected at
any given time. Start with two buffers per physical disk attached to a server. If
you monitor the output of the statvsd command for queued buddy buffer
requests, you can determine whether this setting is correct.

Tuning Virtual Shared Disks:

Each VSD requires parameters in the System Data Repository (SDR). These
parameters must be set to sufficient values in order to operate efficiently:

IP Packet Size
Cache Buffers
Request Count
Buddy Buffers

The purpose of these parameters is outside the scope of this document.
Consult PSSP: Managing Shared Disks, SA22-7349 for detailed descriptions.
The following is an example of the vsdnode command that could be used to
initially set up VSD on an 8-node SP:
222 Understanding and Using the SP Switch

vsdnode 1 2 3 4 5 6 7 8 css0 64 256 256 48 4096 262144 33 61440

This is only an example; the actual settings you may need will vary. On a
system where VSD is already set up, these parameters could be changed
using the updatevsdnode command instead.

To verify these values on the SP nodes, enter

vsdatalst -n

Output similar to the following is returned:

For more information on buddy buffers, refer to PSSP: Managing Shared
Disks, SA22-7349.

11.6.3 Tuning for GPFS
Two SP Switch tunable parameters affect GPFS performance: rpoolsize and
spoolsize. Insufficient memory allocation to these switch pools can result in
major performance degradation. Unless your nodes are very short of memory,
we recommend that both of these pools be set to 16 MB (the maximum
allowed).

You can use SMIT or the mmchconfig command to change the following
GPFS configuration attributes after the initial configuration has been set:

1. pagepool

2. mallocsize

3. priority

4. autoload

5. client_ports

VSD Node Information
 Initial Maximum VSD rw Buddy Buffer
 node VSD IP packet cache cache request request minimum maximum size: #
 number host_name adapter size buffers buffers count count size size maxbufs
 ------ --------------- -------- --------- ------- ------- ------- ------- ------- ------- -------
 1 k13n01.ppd.pok. css0 61440 64 256 256 48 4096 262144 33
 2 k13n02.ppd.pok. css0 61440 64 256 256 48 4096 262144 33
 3 k13n03.ppd.pok. css0 61440 64 256 256 48 4096 262144 33
 4 k13n04.ppd.pok. css0 61440 64 256 256 48 4096 262144 33
 5 k13n05.ppd.pok. css0 61440 64 256 256 48 4096 262144 33
 6 k13n06.ppd.pok. css0 61440 64 256 256 48 4096 262144 33
 7 k13n07.ppd.pok. css0 61440 64 256 256 48 4096 262144 33
 8 k13n08.ppd.pok. css0 61440 64 256 256 48 4096 262144 33
SP Switch-Specific Application and Server Tuning 223

6. server_port_number

7. server_kprocs

Attributes 1 through 3 take effect the next time GPFS is started. Attributes 4
through 7 require that the nodes be rebooted before new values take effect.
224 Understanding and Using the SP Switch

Part 5. Appendices
© Copyright IBM Corp. 1999 225

226 Understanding and Using the SP Switch

Appendix A. SP Switch Service Interface

In this appendix we describe in detail the service packets defined in the SP
Switch. We also describe the First Error Capture Register and the Second
Error Capture Register.

A.1 Service Packets

There are five service packets that the primary node can send to a switch
chip:

 • Initialization Packet

 • Read Status Packet

 • Reset Error Packet

 • Set TOD Packet

 • Send TOD Packet

A switch chip can generate a single type of packet, either as an
acknowledgment or to report an error:

 • Error/Status Packet

They are all described in the following sections.

A.1.1 Initialization Packet

The initialization service packet is used to configure all the parameters of the
switch chip. After having updated all its internal registers and variables, the
chip returns an Error/ Status service packet with the actual configuration as
an acknowledgment to the initialization command.

In a byte, bit 0 is the most significant bit. For instance, if a byte has the
hexadecimal value 0x40, only bit 1 is set on the byte.

When a byte describes the status of the switch chip ports, bit 0 represents
port 0, bit 1 represents port 1, and so on.

Attention
© Copyright IBM Corp. 1999 227

The packet contains the information described in Table 18

Table 18. Initialization Service Packet

Byte Description

0 Packet Length/Service Command

1 Reserved

2:9 Primary Route Table

10:17 Secondary Route Table

18:19 Chip Identification

20 Link Round Trip Time-Out Threshold

21 Receiver End-of-Packet Time-Out Threshold

22 Receiver EDC Error Count Threshold

23 Sender Token Error Count Threshold

24 Receiver Bypass Path Enables

25 Receiver Central Queue Path Enables

26 Receiver Link Enable Bits

27 Sender Link Enable Bits

28 EDC Frame Length

29 Mode Bits

30 EDC Error Enables

31 Parity Error on Route Enables

32 Undefined Control Character Error Enables

33 Unsolicited Data Error Enables

34 Receiver Lost EOP Error Enables

35 Reserved

36 STI Data Re-Time Request reporting Enables

37 Receiver Link Synchronization Error Enables

38 FIFO Overflow Error Enables

39 Token Count Miscompare Error Enables
228 Understanding and Using the SP Switch

The two Route Tables, primary and secondary, are used when the switch chip
is either reporting errors or generating acknowledgments. The three least
significant bits of the last byte will indicate how many of the previous seven
route bytes were valid. If the destination node is directly attached to the
switch chip, the length field will be equal to zero. The destination port through
which the service logic will transmit the Error/Status packet must be in the
most significant nibble of the first byte of the route table specification, even for
a route of length equal to zero.

The Chip Identification is used as part of the template for generating
Error/Status packets which are sent to the service processor. The service
software uses this chip address to identify each unique chip in the system.
The service software can define the chip address any way it sees fit; the
switch does not care about the meaning of the chip address.

The Link Round Trip Time-out Threshold is used by each receiver port to
control link synchronization.

40 EDC Error Threshold Reporting Enables

41 Receiver State Machine Error Enables

42 Parity Error on Data Enables

43 Token Sequence Error Enables

44 Invalid Route Error Enables

45 Reserved

46 STI-Re-Time Request Reporting Enables

47 Token Count Overflow Error Enables

48 Token Error Threshold Reporting Enables

49 Sender Link Synchronization Error Enables

50 Sender State Machine Error Enables

51 Central Queue Error Enables

52 Service Error Enables

53 Reserved

54-63 Padded Out by Adapter to 8-Byte Boundary

Byte Description
SP Switch Service Interface 229

The Receiver End-of-Packet Time-out Threshold tells each receiving port how
long they must wait for the end of the packet. If the timer expires, the
receiving port inserts a Packet Fail character and starts waiting for a
Beginning of Packet.

When the EDC Errors on a switch chip link reach the EDC Threshold Error, an
Error/Status packet is sent and the link starts the initialization process.

When a sender’s Token Error counters reach the Sender Token Error Count
Threshold, an Error/Service packet is sent and the link starts the initialization
process.

The Receiver Bypass Path Enable Bits are used by each receiver state
machine to determine if packets are allowed to take a bypass path to the
destination port. If a receiver has its bypass path disabled, it is forced to
buffer all packets into the central queue buffer.

The Receiver Central Queue Path Enable Bits are used by each receiver
state machine to determine if packets are allowed to use the central queue
buffer. If a receiver has its central queue path disabled, it is forced to transmit
all packets across the bypass path.

The Receiver Link Enable Bits are used by each receiver state machine to
determine if they should accept packets or not. One cannot disable all the
links of the chip since this makes it impossible for the chip to receive a new
configuration packet.

The Sender Link Enable Bits are used by each sender state machine to
determine if it should send packets or not. One cannot disable all the links of
the chip since this makes it impossible for the chip to send error reports.

The EDC Frame Length is used by each of the senders to define the number
of bytes per EDC Frame. The sender notifies its corresponding receiver of the
change in the buffer.

The Mode Bits are used to control the Central Queue data allocation.

The EDC Error Enable Bits are used by each receiver logic to determine if
single EDC errors should be reported when detected. The EDC Error
Threshold Counter, however, is increased even if this error is disabled.

Bytes 31 through 50 are used to control which errors should be reported
when they occur.
230 Understanding and Using the SP Switch

Central Queue Error Enables controls the reporting of errors in the
management of the Central Queue.

Service Error Enables are used to enable a set of reports on the consistency
of service packets received:

 • Incorrect CRC on a Service Packet

 • Incorrect Service Packet Length

 • Parity Error on Inbound FIFO

 • Parity Error on Route Table

 • Invalid Link Enable

 • Send TOD Error

 • State Machine Error

Bytes 53 through 63 are reserved for future use.

A.1.2 Read Status Packet

This service packet is used to request the switch chip to send an Error/ Status
service packet with the actual configuration.

The packet contains the information described in Table 19:

Table 19. Read Status Service Packet

Only the command is needed, since the real action to be taken is to generate
the Error/Status packet. The remainder of the bytes are reserved for future
use.

A.1.3 Reset Error Packet

The Reset Error service packet requests that a switch chip reset sections of
logic and/or error registers. The switch chip will send only one Error/Status
packet when it encounters one of the error scenarios defined in Table 20, and
will not send another until another Reset Error packet is received. This
behavior ensures that the switch network is not flooded with service packets

Byte # Description

0 Service Command

1:7 Padded Out by the Adapter to 8-Byte Boundary
SP Switch Service Interface 231

and the primary node does not miss any error. The packet data is defined in
Table 20.

Table 20. Reset Error Service Packet

The two Receiver Error Resets bytes are used to reset the second error
capture registers defined as receiver-type errors. Their meaning is the
following:

 • High Byte (byte #2)

 • Bits 0:3 are undefined

 • Bit 4 resets the EDC Error Register

 • Bit 5 resets the Parity Error on Route Register

 • Bit 6 resets the Undefined Control Character Error Register

 • Bit 7 resets the Unsolicited Data Error Register

 • Low Byte (byte #3)

 • Bit 0 resets the Lost EOP Error Register

 • Bit 1 is reserved

 • Bit 2 resets the STI Data Re-Time Reporting Register

 • Bit 3 resets the Link Synchronization Error Register

 • Bit 4 resets the FIFO Overflow Error Register

Byte # Description

0 Service Command

1 Reserved

2:3 Receiver Error Resets

4 Receiver EDC Error Counter Resets

5 Receiver Port Logic Resets

6:7 Sender Error Resets

8 Sender Token Error Counter Resets

9 Sender Port Logic Resets

10 Central Queue Resets (Error and Logic)

11 Service Resets (Error and Logic)

12:15 Padded Out by Adapter to 8-Byte Boundary
232 Understanding and Using the SP Switch

 • Bit 5 resets the Token Count Miscompare Error Register

 • Bit 6 resets the EDC Error Count Threshold Error Register

 • Bit 7 resets the State Machine Error Register

The Receiver EDC Error Threshold Counter Reset byte is used to reset the
EDC Error Threshold Counter of one or more receiver modules in the switch
chip. Each bit corresponds to one receiver. The counters can be used as an
instrumentation device, where the software monitors may come in and read
the counter values for each receiver (Read Status packets), and reset them
as they please to monitor link error activity. The Receiver EDC Error
Threshold counter is automatically reset when its threshold value has been
reached and the error is enabled.

The Receiver Port Reset Bits are used by the service logic to determine if the
receiver logic should be reset to a known (Disabled) state.

The two Sender Error Resets bytes are used to reset the second error
capture registers defined as receiver type errors. Their meaning is the
following:

 • High Byte (byte #6)

 • Bits 0:6 are undefined

 • Bit 7 resets the Parity Error on Data Register

 • Low Byte (byte #7)

 • Bit 0 resets the Token Sequence Error Register

 • Bit 1 resets the Invalid Route Error Registers

 • Bit 2 is reserved

 • Bit 3 resets the STI Token Re-Time Reporting Register

 • Bit 4 resets the Token Count Overflow Error Register

 • Bit 5 resets the Token Error Threshold Register

 • Bit 6 resets the Link Synchronization Error Register

 • Bit 7 resets the State Machine Error Register

The Sender Token Error Threshold Counter Reset Bits are used to reset the
Token Error Counter of one or more sender modules in a switch chip. Each bit
represents a sender port. These counters can be used as an instrumentation
device, where the software monitors may come in and read the counter
values for each sender (Read Status packets), and reset them as they please
to monitor link error activity. The Sender Token Error Threshold counter is
SP Switch Service Interface 233

automatically reset when its threshold value has been reached and the error
is enabled.

The Sender Port Reset Bits are used by the switch chip’s sender module to
determine if the sender logic should be reset to a known (Disabled) state.

The Central Queue Error Resets and Control Logic Reset bytes are used to
reset the second error capture registers defined as central queue type errors,
and to reset the central queue logic. The bits are used in the following way:

 • Bits 0:3 are undefined

 • Bit 4 resets the Next Chunk Linked List Initialization Error Latch

 • Bit 5 resets the Next Message Linked List Error Latch

 • Bit 6 resets the Next Chunk Linked List Error Latch

 • Bit 7 resets the Central Queue logic

The Service Error Enables and Control Logic Reset bytes reset the second
error capture registers defined as service-type errors, and also reset the
service logic. In the latter case, the bits are used in the following way:

 • Bit 0 resets the CRC Error Latch

 • Bit 1 resets the Length Error Latch

 • Bit 2 resets the Parity Error on Inbound FIFO Latch

 • Bit 3 resets the Parity Error on Route Table Latch

 • Bit 4 resets the Invalid Link Enable Error Latch

 • Bit 5 resets the Send TOD Error Latch

 • Bit 6 resets the State Machine Error Latch

 • Bit 7 resets the Service logic

The last action of the service state machine when it finishes handling this
service message is to reset the First Error Capture Register, thereby enabling
the reporting of new errors. This will be done for any Reset Packet received,
even if there are no reset bits specified in the packet.

A.1.4 Set Time-of-Day Packet

The service Set TOD packet is a short packet that sets the local time-of-day
counter on the switch chip. This packet may be sent by the primary node or by
234 Understanding and Using the SP Switch

a switch chip or adapter when a Send time-of-day packet is received. The
packet data is defined in Table 21.

Table 21. Set Time-of-Day Packet

The time-of-day field is the value of the TOD counter inserted by the
transmitting adapter or switch.

The time-of-day Delay field is the calculated delay between the launch of the
Set TOD packet from the adapter or the switch to the loading of the TOD clock
at the destination adapter or switch. This value is calculated by the software.

The time-of-day Delay is concatenated with the time of day and loaded into
the destination chips TOD counter. The switch inherits this new time of day,
and starts incrementing the TOD counter from there.

A.1.5 Send Time-of-Day Packet

The service Send TOD packet is used by the primary node to make a switch
send the time-of-day counter value to an adjacent device, adapter or switch,
using a Set time-of-day packet. The packet data is defined in Table 22.

Table 22. Send Time-of-Day Packet

The Transmit Port contains in the three least significant bits from which of the
eight send ports of the switch chip the resulting Set TOD packet is to be

Byte # Description

0 Service Command

1 Reserved

2:7 Reserved

8:14 Time-of-Day

15 Time-of-Day Delay

Byte # Description

0 Service Command

1 Reserved

2:6 Reserved

7 Transmit Port

8:14 Reserved

15 Time-of-Day Delay
SP Switch Service Interface 235

transmitted through. This value is stored in an 8-bit register which is used to
make a connection request to the proper send port when the Set TOD packet
is ready for transmission.

The time-of-day Delay is the calculated delay between the launch of the Set
TOD packet from the adapter or the switch to the loading of the TOD clock at
the destination adapter or switch. This value is calculated by the software.

A.1.6 Error/Status Packet

A switch chip sends a packet to the primary node using the two routes
defined during initialization in response to one error or as an acknowledge to
the Read Status Service Packet, an Initialization Service Packet, a Reset
Service Packet, or a Set TOD Service Packet. The Error/Status packets are
transmitted sequentially and not in parallel across the two routes. The
Error/Status packet contains the information in Table 23:

Table 23. Error/Status Packet

Byte # Definition

0 Service Command

1 Reserved

2:3 Chip Identification Number

4 Sequence Number

5 Reserved

6:8 First Error Capture Register

Second Error Capture Registers

9 EDC Error Register

10 Parity Error on Route Register

11 Undefined Control Character Error Register

12 Unsolicited Data Error Register

13 Receiver Lost EOP Error Register

14 Reserved

15 STI Data Re-Time Request reporting Register

16 Receiver Link Synchronization Error Register

17 FIFO Overflow Error Register
236 Understanding and Using the SP Switch

18 Token Count Miscompare Error Register

19 EDC Error Threshold reporting Register

20 Receiver State Machine Error Register

21 Parity Error on Data Register

22 Token Sequence Error Register

23 Invalid Route Error Register

24 Reserved

25 STI-Re-Time Request Reporting Register

26 Token Count Overflow Error Register

27 Token Error Threshold Reporting Register

28 Sender Link Synchronization Error Register

29 Sender State Machine Error Register

30 Central Queue Error Register

31 Service Error Register

Chip Status

32:33 Receiver0 States

34:35 Receiver1 States

36:37 Receiver2 States

38:39 Receiver3 States

40:41 Receiver4 States

42:43 Receiver5 States

44:45 Receiver6 States

46:47 Receiver7 States

48 Sender0 States

49 Sender1 States

50 Sender2 States

51 Sender3 States

Byte # Definition
SP Switch Service Interface 237

52 Sender4 States

53 Sender5 States

54 Sender6 States

55 Sender7 States

56 Receiver0 EDC Error Count Value

57 Receiver1 EDC Error Count Value

58 Receiver2 EDC Error Count Value

59 Receiver3 EDC Error Count Value

60 Receiver4 EDC Error Count Value

61 Receiver5 EDC Error Count Value

62 Receiver6 EDC Error Count Value

63 Receiver7 EDC Error Count Value

64 Number of Free Addresses in Receiver0 FIFO

65 Number of Free Addresses in Receiver1 FIFO

66 Number of Free Addresses in Receiver2 FIFO

67 Number of Free Addresses in Receiver3 FIFO

68 Number of Free Addresses in Receiver4 FIFO

69 Number of Free Addresses in Receiver5 FIFO

70 Number of Free Addresses in Receiver6 FIFO

71 Number of Free Addresses in Receiver7 FIFO

72 Sender0 Token Error Count Value

73 Sender1 Token Error Count Value

74 Sender2 Token Error Count Value

75 Sender3 Token Error Count Value

76 Sender4 Token Error Count Value

77 Sender5 Token Error Count Value

78 Sender6 Token Error Count Value

Byte # Definition
238 Understanding and Using the SP Switch

79 Sender7 Token Error Count Value

80 Number of Tokens Queues in Sender0

81 Number of Tokens Queues in Sender1

82 Number of Tokens Queues in Sender2

83 Number of Tokens Queues in Sender3

84 Number of Tokens Queues in Sender4

85 Number of Tokens Queues in Sender5

86 Number of Tokens Queues in Sender6

87 Number of Tokens Queues in Sender7

88 Number of Free Addresses in the Central Queue (High)

89 Number of Free Addresses in the Central Queue (Low)

90 Number of Messages in the Central Queue Queued for Sender0

91 Number of Messages in the Central Queue Queued for Sender1

92 Number of Messages in the Central Queue Queued for Sender2

93 Number of Messages in the Central Queue Queued for Sender3

94 Number of Messages in the Central Queue Queued for Sender4

95 Number of Messages in the Central Queue Queued for Sender5

96 Number of Messages in the Central Queue Queued for Sender6

97 Number of Messages in the Central Queue Queued for Sender7

Initialization Packet Data

98:105 Primary Route Table

106:113 Secondary Route Table

114 Link Round Trip Time-Out Threshold

115 Receiver End-of-Packet Time-Out Threshold

116 Receiver EDC Error Count Threshold

117 Sender Token Error Count Threshold

118 Receiver Bypass Path Enables

Byte # Definition
SP Switch Service Interface 239

119 Receiver Central Queue Path Enables

120 Receiver Link Enable Bits

121 Sender Link Enable Bits

122 EDC Frame Length

123 Mode Bits

124 EDC Error Enables

125 Parity Error on Route Enables

126 Undefined Control Character Error Enables

127 Unsolicited Data Error Enables

128 Receiver Lost EOP Error Enables

129 Reserved

130 STI Data Re-Time Request Reporting Enables

131 Receiver Link Synchronization Error Enables

132 FIFO Overflow Error Enables

133 Token Count Miscompare Error Enables

134 EDC Error Threshold reporting Enables

135 Receiver State Machine Error Enables

136 Parity Error on Data Enables

137 Token Sequence Error Enables

138 Invalid Route Error Enables

139 Reserved

140 STI-Re-Time Request Reporting Enables

141 Token Count Overflow Error Enables

142 Token Error Threshold Reporting Enables

143 Sender Link Synchronization Error Enables

144 Sender State Machine Error Enables

145 Central Queue Error Enables

Byte # Definition
240 Understanding and Using the SP Switch

The two-byte Chip Identification uniquely identifies each switch chip to the
service processor. It is defined to the chip during initialization through the
initialization service packet.

The Sequence Number is an eight-bit number which uniquely identifies each
pair of Error/Status packets transmitted from a given switch chip to their
respective primary and secondary nodes. Both the first and second packets
have the same sequence number. The service logic increments the sequence
number at the end of the Error/Status packet transmission.

The First Error Capture Register and the Second Error Capture Register
collect all events on the switch chip, separating the first event from the
following ones. See A.2, “Error Registers” on page 242 for more details.

The Chip Status bytes give information relative to the status of the switch
chip. This information can be used for debugging, instrumentation, and
monitoring the switch chip. Several parameters are collected from each
sender and receiver module and from the central queue which provide a
snapshot of the chip status. Network congestion, link and protocol problems
can be monitored and isolated using this data.

The Initialization Register Values are set up during chip initialization. They
are read out to verify that an initialization packet has been received properly.

The time-of-day Counter Value is included for two reasons. First, it puts a time
stamp on the Error/Status packet. Secondly, the most significant bit of the
TOD clock indicates whether or not the TOD clock has ever been initialized. A
value of logic 1 says that the TOD clock has been initialized. If the
Error/Status packet is generated as a result of an error, the TOD value
contains the time that the error occurred.

The signature/MISR is a 32-bit number stored at the completion of the Built-In
Self Test. It is included as a means for software to get at the results of the

146 Service Error Enables

147 Reserved

148:155 TOD Counter

156:251 Reserved

252:255 Signature (MISR Data)

Byte # Definition
SP Switch Service Interface 241

chips’ built-in self test. The signature for all switch chips will be identical if the
chips pass the self test.

A.2 Error Registers

To isolate errors, the first error that occurs is captured in the First Error
Capture Register and no other errors are added to that register until it has
been explicitly reset by a Reset packet. Subsequent errors are added to the
Second Error Capture Register

A.2.1 First Error Capture Register

The First Error Capture Register should have at most one bit set, indicating
whether or not an error has occurred and which error it was. To discover on
which module the first error occurred, look at the Second Error Capture
Register. The contents of the register are described in Table 24, making
reference to the Error/Status packet’s bytes.

Table 24. First Error Register

Byte of Error/Status Packet Bit Meaning

6 0 Reserved

1 EDC Error

2 Parity Error on Route

3 Undefined Control Character

4 Unsolicited Data

5 Receiver Lost EOP

6 Reserved

7 STI Data Re-Time Request

As previously mentioned, in a byte, bit 0 is the most significant bit. For
instance, if a byte has the hexadecimal value 0x40, only bit 1 is set on the

Attention
242 Understanding and Using the SP Switch

A.2.2 Second Error Capture Register

The Second Error Capture Register details exactly where the error indicated
in the First Error Capture Register occurred, as well as any subsequent
errors. The Second Error Capture Register continues to accumulate errors
until it is read and put into an Error/Status packet.

A second set of registers (the Pending Error Capture Register described in
Table 25) is used to collect errors that occur between the read of the register
and the reset of the register. Once the reset has occurred, the errors that
were flagged between the read and the reset are loaded into the Second
Error Capture Register. This prevents some errors from being missed.

7 0 Receiver Link Synchronization Fail

1 FIFO Overflow

2 Token Count Miscompare

3 EDC Error Threshold

4 Receiver State Machine Error

5 Parity Error on Data

6 Token Sequence Error

7 Sender Invalid Route

8 0 Reserved

1 STI Token Re-Time Request

2 Token Count Overflow

3 Token Error Threshold

4 Sender Link Synchronization Fail

5 Sender State Machine Error

6 Central Queue Error

7 Service Error

Byte of Error/Status Packet Bit Meaning
SP Switch Service Interface 243

Table 25 shows the Second Error Capture Register, as represented in the
Error/Status packet:

Table 25. Second Error Capture Register

Byte Meaning Bit meaning

9 EDC Error Receivers

10 Parity Error on Route Receivers

11 Undefined Control Character Error Receivers

12 Unsolicited Data Error Receivers

13 Receiver Lost EOP Receivers

14 Reserved

15 STI Data Re-Time Reporting Receivers

16 Receiver Link Synchronization Error Receivers

17 FIFO Overflow Error Receivers

18 Token Count Miscompare Error Receivers

19 EDC Error Threshold Reporting Receivers

20 Receiver State Machine Error Receivers

21 Parity Error on Data Senders

22 Token Sequence Error Senders

23 Sender Invalid Route Error Senders

24 Reserved

25 STI Token Re-time Request Reporting Senders

26 Token Count Overflow Error Senders

27 Token Error Threshold Reporting Senders

28 Sender Link Synchronization Error Senders

29 Sender State Machine Error Senders

30 Central Queue Error 0:4 = undefined
5 = NCLL Initialization Error
6 = NMLL Error
7 = NCLL Error
244 Understanding and Using the SP Switch

31 Service Error 0 = undefined
1 = CRC Error
2 = Length Error
3 = PE on Inbound FIFO Error
4 = PE on Route Table Error
5 = invalid Link Enable
6 = send TOD error
7 = State Machine Error

Byte Meaning Bit meaning
SP Switch Service Interface 245

246 Understanding and Using the SP Switch

Appendix B. Example Configuration Files

In this appendix we list an example of a switch topology file and an example
of a clock topoloy file.

B.1 Example of a Switch Topology File

This is the annotated version of the expected.top.2nsb.0isb.0 topology file.

#pragma comment (copyright, "@(#) expected.top.2nsb.0isb.0 1.1 1 7/11/94
14:37
:51 \0")
IBM_PROLOG_BEGIN_TAG
This is an automatically generated prolog.
#
#
#
Licensed Materials - Property of IBM
#
(C) COPYRIGHT International Business Machines Corp. 1993,1997
All Rights Reserved
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
IBM_PROLOG_END_TAG
#
FUNCTIONS: This file describes the wiring configuration for the High
Performance Switch. It is used during switch initialization
("Estart" command). It should not be changed unless the
node-to-switch or switch-to-switch cabling differs from the
prescribed pattern.
#
FORMAT: A node-to-switch connection looks like: s 36 3 tb2 15 0
| || | | |
Switch...| || | | |
in switch 3.....|| | | |
chip 6......| | | |
port 3........| | |
is connected to the TB0 or TB2 adapter......| |
in switch node number|
#
Switch-to switch connections just use the first four components
twice.
#
ORIGINS: 27
© Copyright IBM Corp. 1999 247

#
#CPRY
5765-296 (C) Copyright IBM Corporation 1993,1994
Licensed Materials - Property of IBM
All rights reserved.
US Government Users Restricted Rights -
Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.
#CPRY
#
##
#
Initial version - 3 Feb 94
#
##
#
format 1
32 28
Node connections in frame L01 to switch 1 in L01
s 15 3 tb3 0 0 E01-S17-BH-J7 to E01-N1
s 15 2 tb3 1 0 E01-S17-BH-J8 to E01-N2 # Dependent Node
s 16 0 tb3 2 0 E01-S17-BH-J26 to Exx-Nxx
s 16 1 tb3 3 0 E01-S17-BH-J25 to Exx-Nxx
s 15 1 tb3 4 0 E01-S17-BH-J9 to E01-N5
s 15 0 tb3 5 0 E01-S17-BH-J10 to E01-N6
s 16 2 tb3 6 0 E01-S17-BH-J24 to E01-N7
s 16 3 tb3 7 0 E01-S17-BH-J23 to E01-N8
s 14 3 tb3 8 0 E01-S17-BH-J31 to E01-N9
s 14 2 tb3 9 0 E01-S17-BH-J32 to E01-N10
s 17 0 tb3 10 0 E01-S17-BH-J18 to E01-N11
s 17 1 tb3 11 0 E01-S17-BH-J17 to E01-N12
s 14 1 tb3 12 0 E01-S17-BH-J33 to E01-N13
s 14 0 tb3 13 0 E01-S17-BH-J34 to E01-N14
s 17 2 tb3 14 0 E01-S17-BH-J16 to E01-N15
s 17 3 tb3 15 0 E01-S17-BH-J15 to Exx-Nxx
On board connections between switch chips on switch 1 in Frame L01
s 14 7 s 13 4 E01-S17-SC
s 14 6 s 12 4 E01-S17-SC
s 14 5 s 11 4 E01-S17-SC
s 14 4 s 10 4 E01-S17-SC
s 15 7 s 13 5 E01-S17-SC
s 15 6 s 12 5 E01-S17-SC
s 15 5 s 11 5 E01-S17-SC
s 15 4 s 10 5 E01-S17-SC
s 16 7 s 13 6 E01-S17-SC
s 16 6 s 12 6 E01-S17-SC
s 16 5 s 11 6 E01-S17-SC
248 Understanding and Using the SP Switch

s 16 4 s 10 6 E01-S17-SC
s 17 7 s 13 7 E01-S17-SC
s 17 6 s 12 7 E01-S17-SC
s 17 5 s 11 7 E01-S17-SC
s 17 4 s 10 7 E01-S17-SC
Node connections in frame L02 to switch 2 in L02
s 25 3 tb3 16 0 E02-S17-BH-J7 to E02-N1
s 25 2 tb3 17 0 E02-S17-BH-J8 to Exx-Nxx
s 26 0 tb3 18 0 E02-S17-BH-J26 to Exx-Nxx
s 26 1 tb3 19 0 E02-S17-BH-J25 to Exx-Nxx
s 25 1 tb3 20 0 E02-S17-BH-J9 to E02-N5
s 25 0 tb3 21 0 E02-S17-BH-J10 to E02-N6
s 26 2 tb3 22 0 E02-S17-BH-J24 to E02-N7
s 26 3 tb3 23 0 E02-S17-BH-J23 to E02-N8
s 24 3 tb3 24 0 E02-S17-BH-J31 to E02-N9
s 24 2 tb3 25 0 E02-S17-BH-J32 to E02-N10
s 27 0 tb3 26 0 E02-S17-BH-J18 to E02-N11
s 27 1 tb3 27 0 E02-S17-BH-J17 to Exx-Nxx
s 24 1 tb3 28 0 E02-S17-BH-J33 to E02-N13
s 24 0 tb3 29 0 E02-S17-BH-J34 to Exx-Nxx
s 27 2 tb3 30 0 E02-S17-BH-J16 to E02-N15
s 27 3 tb3 31 0 E02-S17-BH-J15 to Exx-Nxx
On board connections between switch chips on switch 2 in Frame L02
s 24 7 s 23 4 E02-S17-SC
s 24 6 s 22 4 E02-S17-SC
s 24 5 s 21 4 E02-S17-SC
s 24 4 s 20 4 E02-S17-SC
s 25 7 s 23 5 E02-S17-SC
s 25 6 s 22 5 E02-S17-SC
s 25 5 s 21 5 E02-S17-SC
s 25 4 s 20 5 E02-S17-SC
s 26 7 s 23 6 E02-S17-SC
s 26 6 s 22 6 E02-S17-SC
s 26 5 s 21 6 E02-S17-SC
s 26 4 s 20 6 E02-S17-SC
s 27 7 s 23 7 E02-S17-SC
s 27 6 s 22 7 E02-S17-SC
s 27 5 s 21 7 E02-S17-SC
s 27 4 s 20 7 E02-S17-SC
switch 1 to switch 2
s 13 3 s 23 3 E01-S17-BH-J3 to E02-S17-BH-J3
s 13 2 s 23 2 E01-S17-BH-J4 to E02-S17-BH-J4
s 13 1 s 23 1 E01-S17-BH-J5 to E02-S17-BH-J5
s 13 0 s 23 0 E01-S17-BH-J6 to E02-S17-BH-J6
s 12 3 s 22 3 E01-S17-BH-J27 to E02-S17-BH-J27
s 12 2 s 22 2 E01-S17-BH-J28 to E02-S17-BH-J28
s 12 1 s 22 1 E01-S17-BH-J29 to E02-S17-BH-J29
Example Configuration Files 249

s 12 0 s 22 0 E01-S17-BH-J30 to E02-S17-BH-J30
s 11 3 s 21 3 E01-S17-BH-J11 to E02-S17-BH-J11
s 11 2 s 21 2 E01-S17-BH-J12 to E02-S17-BH-J12
s 11 1 s 21 1 E01-S17-BH-J13 to E02-S17-BH-J13
s 11 0 s 21 0 E01-S17-BH-J14 to E02-S17-BH-J14
s 10 3 s 20 3 E01-S17-BH-J19 to E02-S17-BH-J19
s 10 2 s 20 2 E01-S17-BH-J20 to E02-S17-BH-J20
s 10 1 s 20 1 E01-S17-BH-J21 to E02-S17-BH-J21
s 10 0 s 20 0 E01-S17-BH-J22 to E02-S17-BH-J22

B.2 Example of a Clock Topology File

This is the clock file Eclock.top.7nsb.4isb.0.

NAME: Eclock.top.7nsb.4isb.0
#
FUNCTIONS: This file describes the clock configuration for an 112-way
with seven (7) Node Switch Boards (NSBs) and four (4)
Intermediate Switch Boards (ISBs).
It is used during clock source selection process
("Eclock" command). It should not be changed unless the
switch-to-switch cabling differs from the prescribed pattern.
FORMAT: See below.
NOTES:
Switch Numbers: This is the switch number of the target switch
board.
Node Switch Boards (NSBs) numbers are less than 1000.
Intermediate Switch Boards (ISBs) numbers are greater
than 1000.
#
Multiplexor values:
0 - Use the internal oscillator (make this switch board the
master frame).
1 - Use input 1 (Clock input from Jack J3 -- Both Switches)
2 - Use input 2 (Clock input from Jack J5 -- High Perf.
Switch)
(Clock input from Jack J4 -- SP Switch)
3 - Use input 3 (Clock input from Jack J7 -- High Perf.
Switch)
(Clock input from Jack J5 -- SP Switch)
4 - Use input from Jack J4 (SP Switch)
5 - Use input from Jack J5 (SP Switch)
6 - Use input from Jack J6 (SP Switch)
7 - Use input from Jack J7 (SP Switch w/ ISBs)
8 - Use input from Jack J8 (SP Switch w/ ISBs)
250 Understanding and Using the SP Switch

9 - Use input from Jack J9 (SP Switch w/ ISBs)
10 - Use input from Jack J10 (SP Switch w/ ISBs)
27 - Use input from Jack J27 (SP Switch)
28 - Use input from Jack J28 (SP Switch)
29 - Use input from Jack J29 (SP Switch)
30 - Use input from Jack J30 (SP Switch)
31 - Use input from Jack J31 (SP Switch w/ ISBs)
32 - Use input from Jack J32 (SP Switch w/ ISBs)
33 - Use input from Jack J33 (SP Switch w/ ISBs)
34 - Use input from Jack J34 (SP Switch w/ ISBs)
#
Clock source switch numbers will equal zero (0) when the associated
clock multiplexor (mux) value is set to internal (0).
Jack numbers will equal xx when the ’receiving’ switch is using an
internal clock, in which case ’receiving’ and source jack numbers
are meaningless.
#
NOTE: Programs use the Switch number, Clock multiplexor (mux) value,
and the Clock source switch number. Those values must be the first,
second, and fourth values on the non-comment lines in this file.
The values are separated by spaces.
Given the Clock Multiplexor (mux) value and the Type of Switch,
you can determine the Clock receiver jack number. If the mux value
is 1,then the ’Clock receiver jack number’ is J3 for both switches.
If the mux value is 2, then the ’Clock receiver jack number’ is J5
for the High Performance Switch and J4 for the SP Switch.
If the mux value is 3, then the ’Clock receiver jack number’ is J7
for the High Performance Switch and J5 for the SP Switch.
#
Switch number
| Clock multiplexor (mux) value
| | Clock receiver jack number (High Performance Switch) / (SP
Switch)
| | | Clock source switch number
| | | | Clock source jack number (High Performance Switch)
| | | | | Clock source jack number (SP Switch)
| | | | | |
 1 1 J3/J3 1001 J3 J3
 2 1 J3/J3 1001 J5 J4
 3 1 J3/J3 1001 J7 J5
 4 1 J3/J3 1001 J9 J6
 5 1 J3/J3 1001 J4 J34
 6 1 J3/J3 1001 J6 J33
 7 1 J3/J3 1001 J8 J32
1001 0 xx/xx 0 xx xx
1002 1 J3/J3 1 J5 J4
1003 1 J3/J3 1 J7 J5
Example Configuration Files 251

1004 2 J5/J4 2 J9 J6
#
The following is the alternate clock source selections
#
Switch number
| Alternate clock multiplexor (mux) value
| | Alternate Clock receiver jack number (High Perf. Switch)/(SP
Switch)
| | | Alternate Clock source switch number
| | | | Alternate Clock source jack number (High Perf. Switch)
| | | | | Alternate Clock source jack number (SP Switch)
| | | | | |
 alternate 1
 1 2 J5/J4 1002 J3 J3
 2 2 J5/J4 1002 J5 J4
 3 2 J5/J4 1002 J7 J5
 4 2 J5/J4 1002 J9 J6
 5 2 J5/J4 1002 J4 J34
 6 2 J5/J4 1002 J6 J33
 7 2 J5/J4 1002 J8 J32
1001 2 J5/J4 2 J3 J3
1002 0 xx/xx 0 xx xx
1003 2 J5/J4 2 J7 J5
1004 3 J7/J5 3 J9 J6
252 Understanding and Using the SP Switch

Appendix C. SP Switch Error Messages

In this appendix we list the return codes from the Worm code and the Route
Table Generation code.

C.1 SP Switch Worm Return Codes

This table provides the Worm return codes.

Table 26. Worm Return Codes

Code Reference Return
Code

Description

_TBS_RC_ES_ON_FIFO 6 E/S packet on the receive FIFO

_TBS_RC_DEV_DISABLED 5 Device is disabled

_TBS_RC_DB_ALTERED 4 Device database was altered

_TBS_RC_NEW_BACKUP 3 New backup has been selected

_TBS_RC_PORT_WRAPPED 2 Port is wrapped

_TBS_RC_FIFO_EMPTY 1 Receive FIFO is empty

_TBS_RC_SUCCESS 0 No error recorded

_TBS_RC_RCV_TIMEOUT -1 Received a time-out

_TBS_RC_TBOP_NO_OP -2 Local adapter sender not enabled

_TBS_RC_TBIP_NO_OP -3 Local adapter receiver not enabled

_TBS_RC_NO_RTG -4 Unable to generate routes for the network

_TBS_RC_RS_SEND_FAILED -5 Send packet from local node failed

_TBS_RC_SW_MISWIRE -6 Switch miswire detected

_TBS_RC_NODE_MISWIRE -7 Node miswire detected

_TBS_RC_FIFO_FULL -8 Receive FIFO is full

_TBS_RC_BFS_FIFO_ERR -9 Unable to initialize FIFOs

_TBS_RC_SWT_DEV_ON_FIFO -10 Found TBIC device on the Sw device FIFO

_TBS_RC_NODE_VISITED -11 Node has been visited

_TBS_RC_NO_NEW_BK -12 No new backup has been selected

_TBS_RC_NOT_A_SWT -13 The device is not a switch
© Copyright IBM Corp. 1999 253

_TBS_RC_NO_MATCH -14 Unable to locate entry in device DB

_TBS_RC_BAD_SIGNATURE -15 Bad signature in E/S packet

_TBS_RC_WRONG_DEV -16 Wrong device responded packet

_TBS_RC_NOT_SW_ES_PKT -17 E/S packet received was not from a switch
device

_TBS_RC_WRONG_BK_RT -18 Wrong backup (Secondary) route

_TBS_RC_UNEXP_PORT_STATE -19 Unexpected port state

_TBS_RC_NOT_NODE_ES_PKT -20 E/S packet received was not from a node
device

_TBS_RC_NODE_FAULTY -21 Node is faulty

_TBS_RC_BK_ID_NOT_TBIC -22 The selected backup is not a TBIC device

_TBS_RC_NO_RESPONSE -23 No response received

_TBS_RC_SEND_FAILED -24 Send phase1 Sw init packet failed

_TBS_RC_NOT_TBIC -25 Device ID not a TBIC

_TBS_RC_NOT_SWT -26 Device ID not a Sw

_TBS_RC_TBIC_NOT_INIT -27 The TBIC was not initialized

_TBS_RC_UNEXP_ES_PKT -28 Unexpected E/S packet received

_TBS_RC_FENCE_FAILED -29 The fence operation failed

_TBS_RC_ECR_BIT_ON -30 Error Capture Register has a bit on

_TBS_RC_RCV_FIFO_NOT_EMPTY -31 Receive FIFO is not empty

_TBS_RC_UNFENCE_FAILED -32 The Unfence operation failed

_TBS_RC_ALREADY_FENCED -33 The node was already fenced

_TBS_RC_NOT_FENCED -34 The node is not fenced

_TBS_RC_INVALID_ROUTE_BIT -35 Invalid route

_TBS_RC_RESIGN_PRIMARYSHIP -36 Give up Primary node operations on this node

_TBS_RC_ES_LIMIT_HIT -37 Number of errors discovered exceeded
threshold

_TBS_RC_LINK_LIMIT_HIT -38 Number of disabled Links exceeded threshold

Code Reference Return
Code

Description
254 Understanding and Using the SP Switch

C.2 Return Codes from Route Table Generation

This table provides the RTG return codes.

Table 27. RTG Return Codes

_TBS_RC_NODE_TIMEOUT_HIT -39 Node timed out on Scan

_TBS_RC_SWT_TIMEOUT_HIT -40 Number of switch time-outs exceeded
threshold

_TBS_RC_PHASE2_LIMIT_HIT -41 Worm Phase 2 error threshold reached

_TBS_RC_NOT_PH1_PKT -42 Packet received was not generated during
Phase1 of the worm

_TBS_RC_TBIC_RW_FAILED -43 Read/Write operation to TB3 adapter failed

_TBS_RC_TOD_ERROR -44 Time Of Day (TOD) error detected

_TBS_RC_INTERMED_LINK_FAILURE -45 Intermediate Link Failure

_TBS_RC_DUPLICATE_MISSING -46 Duplicate response was not detected

_TBS_RC_PH2_FATAL -47 Phase 2 of the worm failed

_TBS_RC_NOT_PH2_PKT -48 Packet received was not generated during
Phase2 of the worm

_TBS_RC_TOD_NOT_VALID -49 TOD synchronization failed

_TBS_RC_LINK_DISABLED -50 Link has been disabled

Code Reference Return Code Description

ERR_TOPOLOGY 101 Problems with the input
topology file

ERR_NOT_SWITCH 102 The device specified is not a
switch

ERR_NOT_PROC 103 The device specified is not a
processor

ERR_ROUTING_RULE 104 Error in Routing Rules Table

ERR_CALLOC_BFS_FIFO 107 Error allocating memory for
Breadth First Search FIFO

ERR_ILLEGAL_PROC_ID 112 The processor ID is illegal

Code Reference Return
Code

Description
SP Switch Error Messages 255

ERR_CALLOC_ROUTE_ARRAY 113 Error allocating memory for
route array

ERR_CALLOC_DEVLIST_ARRAY 114 Error allocating memory for
Device List

ERR_CALLOC_CSS_CREATE 115 Error allocating memory for
create

ERR_SPECIFY_SOURCE_PROC 116 The source processor specified
in invalid

ERR_BAD_ROUTE 117 Bad route generated

ERR_UNDEFINED_ALGORITHM 118 The routing algorithm specified
does not exist

ERR_BF_SEARCH 119 Breadth First Search failed

ERR_TOP_FILE_FORMAT 120 Format error in Topology file

ERR_DEVICE_NOT_REACHABLE 122 Cannot generate routes for the
device

ERR_NODELIST_EMPTY 123 No nodes in the node list

ERR_SWITCHLIST_EMPTY 124 No switches in the switch list

ERR_DISABLED_CHIP_CNT 125 Too many switch chips disabled

Code Reference Return Code Description
256 Understanding and Using the SP Switch

Appendix D. Special Notices

This publication will help both RS/6000 SP specialists and general users who
want in-depth knowledge about the SP Switch. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by the SP Switch Communication Subsystem (CSS). See
the PUBLICATIONS section of the IBM Programming Announcement for
Parallel System Support Programs (PSSP) for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM’s product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer’s ability to evaluate and integrate
them into the customer’s operational environment. While each item may have
© Copyright IBM Corp. 1999 257

been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks

ADSTAR AIX
AS/400 AT
CT IBM
LoadLeveler NetView
PowerPC 601 PowerPC 603
PowerPC 603e RS/6000
SP SP1
System/390
258 Understanding and Using the SP Switch

or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.
Special Notices 259

260 Understanding and Using the SP Switch

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of some of the topics covered in this redbook.

E.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 263.

 • RS/6000 SP Monitoring: Keeping It Alive, SG24-4873

 • Inside the RS/6000 SP, SG24-5145

 • PSSP 2.4 Technical Presentation, SG24-5173

 • PSSP 3.1 Announcement, SG24-5332

 • RS/6000 SP Problem Determination Guide, SG24-4778

 • GPFS: A Parallel File System, SG24-5165

E.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

E.3 Other Publications

These publications are also relevant as further information sources:

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022

Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044

AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041

RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043
Application Development Redbooks Collection SBOF-7290 SK2T-8037
© Copyright IBM Corp. 1999 261

 • SP: Planning, Volume 1, Hardware and Physical Environment, GA22-7280

 • SP: Planning, Volume 2, Control Workstation and Software Environment,
GA22-7281

 • PSSP: Installation and Migration Guide, GA22-7347

 • PSSP: Command and Technical Reference, SA22-7351

 • PSSP: Administration Guide, SA22-7348

 • PSSP: Diagnosis Guide, GA22-7350

 • PSSP: Messages Reference, GA22-7352

 • PSSP: Managing Shared Disks, SA22-7349

 • SP Switch Router Adapter Guide, GA22-7310

 • RSCT: Event Management Programming Guide and Reference,
SA22-7354

 • IBM AIX Versions 3.2 and 4 Performance Tuning Guide, SC23-2365

 • AIX System Management Guide: Communications and Networks,
GC23-2487
262 Understanding and Using the SP Switch

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download or order hardcopy/CD-ROM redbooks from the redbooks web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

 • E-mail Orders

Send orders via e-mail including information from the redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information for customer may be found at http://www.redbooks.ibm.com/ and for IBM employees at
http://w3.itso.ibm.com/.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
also view redbook. residency, and workshop announcements at http://inews.ibm.com/.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 263

IBM Redbook Fax Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
264 Understanding and Using the SP Switch

List of Abbreviations

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

APA All Points Addressable

CSS Communication
Subsystem

DMA Direct Memory Access

EDC Error Detection Code

IBM International Business
Machines Corporation

ISB Intermediate Switch
Board

ISC Intermediate Board
Switch Chip[

ITSO International Technical
Support Organization

LAPI Low Level Application
Interface

LSC Link Switch Chip

MPI Message Passing
Interface

MPL Message Passing
Library

NSB Node Switch Board

NSC Node Switch Chip

PE Parallel Environment
for AIX

PLL Phase Locked Loop

STI Self-Timed Interface

TBIC Trail Blazer Interface
Chip

TOD Time-Of-Day
© Copyright IBM Corp. 1999
 265

266 Understanding and Using the SP Switch

Index

Symbols
/etc/rc.net 196, 204
/etc/SP/expected.top 120
/etc/switch.info 116
/spdata/sys1/sdr/partitions/<ip address>/files 99
/spdata/sys1/syspar_configs 99
/spdata/sys1/syspar_configs/topologies 94
/tftpboot/tuning.cust 196
/usr/lpp/adsm/bin/dsmserv.opt 221
/usr/lpp/ssp/install/config/tuning.commercial 210
/usr/lpp/ssp/install/config/tuning.development 210
/usr/lpp/ssp/install/config/tuning.scientific 210
/var/adm/SPlogs/css/act.top.<pid> 122
/var/adm/SPlogs/css/act.top.n 123, 161
/var/adm/SPlogs/css/cable_miswire 181
/var/adm/SPlogs/css/css.snap.log 167
/var/adm/SPlogs/css/dist_topology.log 182
/var/adm/SPlogs/css/dtbx.trace 165
/var/adm/SPlogs/css/dtbx_failed.trace 166
/var/adm/SPlogs/css/flt 153
/var/adm/SPlogs/css/fs_daemon_print.file 164,
181
/var/adm/SPlogs/css/out.top 126, 127, 160, 181
/var/adm/SPlogs/css/rc.switch.log 119, 160, 182
/var/adm/SPlogs/css/scan_out.log 166
/var/adm/SPlogs/css/summlog 152, 180
/var/adm/SPlogs/css/topology.data 123, 161
/var/adm/SPlogs/css/worm.trace 162, 181
/var/adm/SPlogs/CSS_test.log 106

A
Active Message 57
Address Resolution Protocol 60, 81, 92, 204
ARP

See Address Resolution Protocol

B
bandwidth 47
BFS

See Breadth First Search algorithm
Breadth First Search algorithm 124

See also fault service daemon
© Copyright IBM Corp. 1999
C
cfgmgr 111
cfgtb3 111, 113
chgcss 198, 202
clock distribution 134

alternate 101, 136
standard 101

clock topology file 100
See also clock distribution

Communication Subsystem 41, 49
CSS

See Communication Subsystem
css.snap 117, 149, 175
css.summlog 152
css_cdn 141
css_dump 176
css_restart_node 119
CSS_test 106
cssadm

See Switch Admin daemon
cssdd3 112

D
default system partition 83, 104
DMA 47, 63, 68, 70

buffer 55, 69
kernel extension 166
shared memory 67
transfer 39, 42, 62

E
Eannotator 95, 98, 105
Eclock 100, 119

mux 101
switch reset 105, 126
system power up 134, 146

EDC
See Error Detection Code

Efence 140, 157
Emonitor 140, 142
Eprimary 105, 132
Equiesce 141
error

asynchronous 116
permanent 116
unrecoverable 128
267

Error Detection Code 14, 24, 29
Estart 119, 132, 139

Eclock 146
partition-sensitive command 104
troubleshooting 105, 181, 184, 188
Worm 123

Estart_sw 120
Etopology 98, 105
Eunfence 140, 157, 183
Eunpartition 105, 126
Extension node 78

Self-framed node 78
SP Switch router 78

external connection 94

F
fan 6, 36
fault service daemon 64, 116

adapter error 117
automatic unfence 116, 140
fault_service_Worm_RTG_SP 114
personality 113
primary backup node 64, 67, 114, 131
primary backup node takeover 116, 132
primary node 64, 114, 131
primary node takeover 114, 131, 145, 156
scan 116, 157
secondary node 64, 114
termination 117, 159
Worm 65, 124
Worm phase one 124, 154, 163
Worm phase two 126, 159, 163

fault service kernel extension 112, 116
first error capture register 34
frame

expansion frame 74
non-switched frame 74
switched frame 74
switch-only frame 10, 74

fs_dump 176
FTP 213

G
General Parallel File System 82, 89, 223
GPFS 86

See General Parallel File System

H
HAL

Hardware Abstraction Layer
Hardware Abstraction Layer 55
Hashed Shared Disk, 86
High Performance Switch 73
HiPS

See High Performance Switch
HSD

See Hashed Shared Disk

I
i_stub_SP 116, 124
if_ls

See light speed interface
inittab

fsd entry 114, 118
swtadmd entry 143

intermediate switch board 77
internal oscillator 100
IP alias 99, 103
IP communication 50, 59

J
jack 6, 94

L
LAPI

See Low-Level Application Programming Inter-
face

latency 47
light speed interface 59
Link Synchronization Failure 156
Load Leveler 44
Low-Level Application Programming Interface 57
lsattr 197

M
MAC address 204
Management Information Base 174
master switch board 135
master switch chip 136
mbuf 61
mcluster 61
Message Passing Interface 51

MP_BUFFER_MEM 209
MP_EAGER_LIMIT 53, 55, 208
268 Understanding and Using the SP Switch

Message Passing Library 51
MIB

See Management Information Base
MPCI

See Message Passing Client Interface
MPI

See Message Passing Interface
MPL

See Message Passing Library
MTU 207

N
Nagle Algorithm 206
NFS 214
nfso 196, 214

nfs_socketsize 217
nfs_tcp_socketsize 217

nfsstat 215
no 196, 204, 218, 221

ipforwarding 212
rfc1323 208
sb_max 213
tcp_pmtu_discover 213
tcp_recvspace 207, 208, 212, 218, 219
tcp_sendspace 207, 208, 212, 218, 219
thewall 202
udp_pmtu_discover 213

notify_event 171
numbering

node number 75
slot number 74
switch node number 76
switch port number 76

O
ODM classes

CuAt 112, 115
PdDv 111

oncoming primary backup node 119, 132
oncoming primary node 119, 132

P
Parallel Environment for AIX 51
Partitioning Aid 86
pending error capture register 35
Phase Locked Loop 18, 136
PIPE 54

PLL
See Phase Locked Loop

pmandefaults 150
POS

See Programmable Option Select
POST

See Power On Self Test
Power On Self Test 165
power supply 6, 37
Programmable Option Select 166

R
rc.switch 105, 114, 146, 175
read_regs 176
read_tbic 177
Remote Memory Copy 57
Route Table Generation 128, 158
RPC 215
RTG

See Route Table Generation
RVSD

See Recoverable Virtual Shared Disk

S
SDR classes

Adapter 107, 115
host_responds 144
Node 115
Switch 108, 119, 135, 137
Switch_partition 99, 105, 108, 115, 120, 123,
132, 146
switch_responds 107, 115, 117, 129, 144, 169
Syspar 108
Syspar_map 107

SDR_config 115
SDRGetObjects 169
second error capture register 34
Self-Timed Interface 17, 27
SIGTERM 165
socket

SO_RCVBUF 207
SO_SNDBUF 207
TCP_NODELAY 208
TCP_RFC1323 207

sp_fs_control 116
SP_NAME 104
spadaptrs 92, 107
spapply_config 105
 269

spethernt 107
splstdata 93, 105, 106, 107
spmon 106, 135
spverify_config 105
subsystems

swtadmd 143
swtlog 152

switch adapter 38, 165
microcode 42, 112

Switch Admin daemon 140, 142, 143
switch board 5, 9

intermediate switch board 10, 83, 86, 94, 96
master board 19
master chip 18
master switch board 100
node switch board 10, 83, 94
oscillator 36
slave board 19, 100
SP Switch-8 12, 73, 76, 94
supervisor card 5

switch buffer pool
receive pool 63, 197
rpoolsize 223
send pool 62, 197
spoolsize 223

switch chip 6, 21
Central Queue 31
chunk 32
emergency slot 32
flit 22
link enable bit 27, 30
link switch chip 83
node switch chip 83
receiver module 23
route information 25
sender module 28

switch packet
beginning of packet 13
data packet 13
end of packet 13
packet fail 25, 28
service packet 13, 32

switch supervisor card 35, 37
switch topology file

actual 126
annotated 94
distribution 120
expected 94
use 124

syspar_ctrl 105

T
TBIC

See Trail Blazer Interface Chip
Time-Of-Day counter 17, 126, 166
TOD

See Time-Of-Day counter
Trail Blazer Interface Chip 38, 112, 116, 117, 141

U
ucfgtb3 113
updatevsdnode 223
usconfig 116
user space application 50

V
vdidl3 201
Virtual Shared Disk 82, 86, 221

Buddy Buffers 222
vmtune 196
VSD

See Virtual Shared Disk
vsdatalst 223
vsdnode 222

W
window 42

service 45
user space 43, 46

Worm
See fault service daemon
270 Understanding and Using the SP Switch

© Copyright IBM Corp. 1999 271

ITSO Redbook Evaluation

Understanding and Using the SP Switch
SG24-5161-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.
SG24-5161-00

U
nderstanding and U

sing the SP
 Sw

itch
S

G
24-5161-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Overview of the SP Switch
	Chapter 2. The Switch Hardware
	2.1 The SP Switch Module
	2.2 Switch Board Topologies
	2.2.1 From 2 to 80 Nodes
	2.2.2 From 81 to 256 Nodes
	2.2.3 From 257 to 512 nodes

	2.3 The SP Switch-8 Switch Board

	Chapter 3. Communication Network Hardware
	3.1 Packet Data Flow
	3.2 System and Board Clocking
	3.3 STI Timing and Logic Synchronization Process
	3.4 The Switch Chip
	3.4.1 Receiver Modules
	3.4.2 Sender Modules
	3.4.3 Central Queue
	3.4.4 Service Logic
	3.4.5 Error Isolation

	3.5 Switch Supervisor Functions
	3.5.1 Board Clock Selection
	3.5.2 Board Status Monitoring
	3.5.3 Board Reset
	3.5.4 Fan Rotation Sensing
	3.5.5 Power Supply Monitoring and Control
	3.5.6 Board Level Sensing
	3.5.7 Board Configuration Sensing

	3.6 The Switch Adapters
	3.6.1 TB3 Adapter
	3.6.2 TB3MX Adapter
	3.6.3 TB3PCI Adapter
	3.6.4 TB3MX2 Adapter
	3.6.5 Data Flow

	3.7 Performance Data

	Chapter 4. Communicating with the SP Switch
	4.1 Protocol Overview
	4.2 Message Passing Interface (MPI) Layer
	4.3 Message Passing Client Interface (MPCI) Layer
	4.4 PIPE Layer
	4.5 Low-Level Application Programming (LAPI) Layer
	4.6 IP Layer
	4.6.1 Address Resolution Protocol (ARP)
	4.6.2 Send Data Flow
	4.6.3 Receive Data Flow

	4.7 Fault Service Daemon
	4.7.1 Initialization of SP Switch
	4.7.2 Network Recovery Actions
	4.7.3 Generation and Update of Routing Tables
	4.7.4 Administrator Commands
	4.7.5 Fault Daemon Recovery

	4.8 Kernel Extension
	4.8.1 Initialization
	4.8.2 Client Windows
	4.8.3 User Space Client Initialization
	4.8.4 Second Level Interrupt Handlers
	4.8.5 Switch Fault Handling
	4.8.6 Client DMA Buffer Management
	4.8.7 Interaction with the Adapter

	4.9 Device Driver

	Chapter 5. Planning for the SP Switch
	5.1 Choosing a Switch
	5.2 Switch Node Numbering
	5.2.1 Frame Numbers and Switch Numbers
	5.2.2 Slot Numbers and Node Numbers
	5.2.3 Switch Node Numbers
	5.2.4 Inter-Switch Connection Considerations

	5.3 External Connection Plans
	5.3.1 SP Switch Router
	5.3.2 Self-Framed Nodes

	5.4 Planning the Switch IP Network
	5.5 Planning a Partitioned SP System
	5.5.1 Partitioning Rules
	5.5.2 Partitioning Aid

	5.6 VSD and GPFS
	5.6.1 Virtual Shared Disk (VSD)
	5.6.2 Recoverable VSD (RVSD)
	5.6.3 General Parallel Filesystem (GPFS)

	Chapter 6. Installation of the SP Switch
	6.1 Installing the SP Switch
	6.2 Configuring the SP Switch Adapters
	6.3 Specifying the SP Switch Topology File
	6.3.1 File Naming Rule
	6.3.2 Inside a Topology File
	6.3.3 Storing the Topology File in the SDR
	6.3.4 The Topology Files for a Partitioned System

	6.4 Specifying the SP Switch Clock Distribution Tree
	6.5 Setting up System Partitions
	6.5.1 Defining the IP Aliases
	6.5.2 Applying a Partition Configuration
	6.5.3 Repartitioning the SP System

	6.6 Verifying the Installation
	6.6.1 Verification Commands
	6.6.2 SDR Information
	6.6.3 Logs

	Chapter 7. Initialization of the SP Switch
	7.1 Configuration Method of the SP Switch Adapter
	7.2 Running the SP Switch Daemon
	7.2.1 The Daemon Initialization Script
	7.2.2 The Fault Service Daemon
	7.2.3 Managing the rc.switch Script

	7.3 Starting the SP Switch
	7.3.1 Distributing the Topology File
	7.3.2 Starting the Worm Code
	7.3.3 Phase One of Switch Initialization
	7.3.4 Phase Two of the Switch Initialization
	7.3.5 The Generation of Routes

	Chapter 8. Managing the SP Switch
	8.1 Selecting the Primary and Primary Backup Nodes
	8.2 Establishing the SP Switch Clock
	8.2.1 Verifying the Clock Distribution Tree
	8.2.2 Using the Eclock Command
	8.2.3 The Actions of Eclock

	8.3 Starting the SP Switch
	8.4 Removing a Node from the SP Switch Network
	8.5 Adding a Node to the SP Switch Network
	8.6 Stopping the SP Switch
	8.7 Automatic Management of the SP Switch
	8.7.1 Managing the Switch Before PSSP 3.1
	8.7.2 The Switch Admin Daemon
	8.7.3 The Implementation of the Switch Admin Daemon
	8.7.4 Management Tasks Not Yet Automated

	Chapter 9. SP Switch Problem Determination Tools
	9.1 Error Logging
	9.1.1 Viewing Error Log Information
	9.1.2 Log Filesystem Size Consideration

	9.2 SP Switch Log Files
	9.2.1 The Centralized Switch Error Log
	9.2.2 The flt File
	9.2.3 The rc.switch.log File
	9.2.4 The out.top File
	9.2.5 The act.top and topology.data File
	9.2.6 The worm.trace File
	9.2.7 The fs_daemon_print.file File
	9.2.8 The dtbx.trace File
	9.2.9 The Snapshot Log css.snap.log

	9.3 SP System Monitoring
	9.3.1 Monitoring the Switch Connection
	9.3.2 Using the Problem Management Subsystem
	9.3.3 SNMP Traps on SP Switch Failures

	9.4 SP Switch Utilities

	Chapter 10. SP Switch Problem Diagnosis
	10.1 Verification Procedures
	10.2 Diagnosing Procedures
	10.2.1 Estart Fails
	10.2.2 Node Is off the Switch
	10.2.3 Eunfence Fails
	10.2.4 Other E-command Failures

	10.3 Examples of Recovery Procedures
	10.3.1 Estart Problem One
	10.3.2 Estart Problem Two
	10.3.3 Eunfence Problem
	10.3.4 Node Off the Switch

	Chapter 11. SP Switch-Specific Application and Server Tuning
	11.1 General Tuning Recommendations
	11.1.1 Scheduling Administrative Tasks

	11.2 Tuning Considerations
	11.2.1 SP Switch Options
	11.2.2 AIX Tuning Option
	11.2.3 IP Tuning Parameters
	11.2.4 MPI Tuning

	11.3 Files Used on the SP for Tuning
	11.3.1 Select an IBM-Supplied Alternate Tuning File
	11.3.2 Create and Select Your Own Alternate Tuning File

	11.4 Common SP Application Tuning for Performance
	11.4.1 Server Tuning
	11.4.2 Tuning for FTP
	11.4.3 Tuning for NFS

	11.5 SP Environment Tuning for Performance
	11.5.1 Tuning for Development Environments
	11.5.2 Tuning for Scientific and Technical Environments
	11.5.3 Tuning for Commercial and Database Environments

	11.6 Application-Specific Tuning
	11.6.1 Tuning for the ADSTAR Distributed Storage Manager (ADSM)
	11.6.2 Tuning for Virtual Shared Disk (VSD) Servers
	11.6.3 Tuning for GPFS

	Appendix A. SP Switch Service Interface
	A.1 Service Packets
	A.1.1 Initialization Packet
	A.1.2 Read Status Packet
	A.1.3 Reset Error Packet
	A.1.4 Set Time-of-Day Packet
	A.1.5 Send Time-of-Day Packet
	A.1.6 Error/Status Packet

	A.2 Error Registers
	A.2.1 First Error Capture Register
	A.2.2 Second Error Capture Register

	Appendix B. Example Configuration Files
	B.1 Example of a Switch Topology File
	B.2 Example of a Clock Topology File

	Appendix C. SP Switch Error Messages
	C.1 SP Switch Worm Return Codes
	C.2 Return Codes from Route Table Generation

	Appendix D. Special Notices
	Appendix E. Related Publications
	E.1 International Technical Support Organization Publications
	E.2 Redbooks on CD-ROMs
	E.3 Other Publications

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

